Monoamine transporters function in neuronal membranes to control extracellular concentrations of their substrates. Cell-surface expression of transporters is regulated by substrates and intracellular signaling, but the underlying mechanisms remain unclear. Here, we found that substrates of the dopamine transporter (DAT), amphetamine and dopamine, synergize with protein kinase C (PKC)-dependent DAT ubiquitination to markedly elevate clathrin-mediated endocytosis of DAT, which is accompanied by DAT movement out of plasma membrane protrusions with a negative curvature.
View Article and Find Full Text PDFThe nanoscopic organization and regulation of individual molecular components in presynaptic varicosities of neurons releasing modulatory volume neurotransmitters like dopamine (DA) remain largely elusive. Here we show, by application of several super-resolution microscopy techniques to cultured neurons and mouse striatal slices, that the DA transporter (DAT), a key protein in varicosities of dopaminergic neurons, exists in the membrane in dynamic equilibrium between an inward-facing nanodomain-localized and outward-facing unclustered configuration. The balance between these configurations is inversely regulated by excitatory drive and DA D2 autoreceptor activation in a manner dependent on Ca influx via N-type voltage-gated Ca channels.
View Article and Find Full Text PDFThe utilization of fluorescent ligands to study the monoamine transporters (MATs) has increased our knowledge of their function and distribution in live cell systems. In this study, we extend SAR for nisoxetine and talopram as parent compounds, to identify high affinity rhodamine-labeled fluorescent probes for the norepinephrine transporter (NET). Nisoxetine-based fluorescent probe demonstrated high binding affinity ( = 43 nM) for NET and an overall selectivity compared to the other transporters for dopamine (DAT; = 1540 nM) and serotonin (SERT; = 785 nM) in competitive radioligand binding assays.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
April 2021
Missense mutations that give rise to protein misfolding are rare, but collectively, defective protein folding diseases are consequential. Folding deficiencies are amenable to pharmacological correction (pharmacochaperoning), but the underlying mechanisms remain enigmatic. Ibogaine and its active metabolite noribogaine correct folding defects in the dopamine transporter (DAT), but they rescue only a very limited number of folding-deficient DAT mutant proteins, which give rise to infantile Parkinsonism and dystonia.
View Article and Find Full Text PDFThe dopamine transporter (DAT) is critical for spatiotemporal control of dopaminergic neurotransmission and is the target for therapeutic agents, including ADHD medications, and abused substances, such as cocaine. Here, we develop new fluorescently labeled ligands that bind DAT with high affinity and enable single-molecule detection of the transporter. The cocaine analogue MFZ2-12 () was conjugated to novel rhodamine-based Janelia Fluorophores (JF and JF).
View Article and Find Full Text PDFIn contrast to temporal coding by synaptically acting neurotransmitters such as glutamate, neuromodulators such as monoamines signal changes in firing rate. The two modes of signaling have been thought to reflect differences in release by different cells. We now find that midbrain dopamine neurons release glutamate and dopamine with different properties that reflect storage in different synaptic vesicles.
View Article and Find Full Text PDFThe sigma 1 receptor (σR) is a structurally unique transmembrane protein that functions as a molecular chaperone in the endoplasmic reticulum (ER), and has been implicated in cancer, neuropathic pain, and psychostimulant abuse. Despite physiological and pharmacological significance, mechanistic underpinnings of structure-function relationships of σR are poorly understood, and molecular interactions of selective ligands with σR have not been elucidated. The recent crystallographic determination of σR as a homo-trimer provides the foundation for mechanistic elucidation at the molecular level.
View Article and Find Full Text PDFThe development of medications to treat cocaine use disorders has thus far defied success, leaving this patient population without pharmacotherapeutic options. As the dopamine transporter (DAT) plays a prominent role in the reinforcing effects of cocaine that can lead to addiction, atypical DAT inhibitors have been developed that prevent cocaine from binding to DAT, but they themselves are not cocaine-like. Herein, a series of novel DAT inhibitors were synthesized, and based on its pharmacological profile, the lead compound 10a was evaluated in phase I metabolic stability studies in mouse liver microsomes and compared to cocaine in locomotor activity and drug discrimination paradigms in mice.
View Article and Find Full Text PDFDopamine transporter (DAT) has been shown to accumulate in filopodia in neurons and non-neuronal cells. To examine the mechanisms of DAT filopodial targeting, we used quantitative live-cell fluorescence microscopy, and compared the effects of the DAT inhibitor cocaine and its fluorescent analog JHC1-64 on the plasma membrane distribution of wild-type DAT and two non-functional DAT mutants, R60A and W63A, that do not accumulate in filopodia. W63A did not bind JHC1-64, whereas R60A did, although less efficiently compared to the wild-type DAT.
View Article and Find Full Text PDFA new and versatile class of HNO donors, the (hydroxylamino)pyrazolone (HAPY) series of HNO donors utilizing pyrazolone (PY) leaving groups, is described. HNO, the smallest N-based aldehyde equivalent, is used as a reagent along with a variety of PY compounds to synthesize the desired HAPY donors in what can be considered an N-selective HNO-aldol reaction in up to quantitative yields. The bimolecular rate constant of HNO with PY in pH 7.
View Article and Find Full Text PDFDue to its inherent reactivity, HNO must be generated in situ through the use of donor compounds. One of the primary strategies for the development of new HNO donors has been modifying hydroxylamines with good leaving groups. A recent example of this strategy is the (hydroxylamino)barbituric acid (HABA) class of HNO donors.
View Article and Find Full Text PDFDue to its inherent reactivity, nitroxyl (HNO), must be generated in situ through the use of donor compounds, but very few physiologically useful HNO donors exist. Novel N-substituted hydroxylamines with carbon-based leaving groups have been synthesized, and their structures confirmed by X-ray crystallography. These compounds generate HNO under nonenzymatic, physiological conditions, with the rate and amount of HNO released being dependent mainly on the nature of the leaving group.
View Article and Find Full Text PDFConformational influences profoundly impact the performance of organic electronic materials and the reactivity of organic molecules. We recently found that the expected former consideration was uniquely accompanied by the latter. This report describes a surprisingly regioselective bromination that suggests the general use of conformation as a protecting group during complex molecule synthesis.
View Article and Find Full Text PDFA new strategy to achieve regioselective functionalization of a sterically congested aromatic system driven by conformational demands is described. Electrophilic substitution occurs at the more planarizable subunit without undesired chemistry at mutually reactive sites and without the need for protecting or masking groups that must be manipulated later. Model studies are described to understand this selectivity, and possibilities for the construction of orthogonal, differentially substituted pi-systems of relevance for molecular electronics are demonstrated.
View Article and Find Full Text PDF