Publications by authors named "Darya Terekhova"

Background: Childhood anxiety prevents optimal diabetes management yet may be underrecognized by guardians.

Objective: We aimed to investigate associations among anxiety, diabetes treatment adherence, and diabetes symptom control through child and guardian report.

Methods: Cross-sectional pilot study surveying a convenience sample of children (ages 2-21) in a pediatric endocrinology clinic.

View Article and Find Full Text PDF

The gut microbiota affects many important host functions, including the immune response and the nervous system. However, while substantial progress has been made in growing diverse microorganisms of the microbiota, 23-65% of species residing in the human gut remain uncultured, which is an obstacle for understanding their biological roles. A likely reason for this unculturability is the absence in artificial media of key growth factors that are provided by neighbouring bacteria in situ.

View Article and Find Full Text PDF

The bacterial stringent response is triggered by deficiencies of available nutrients and other environmental stresses. It is mediated by 5'-triphosphate-guanosine-3'-diphosphate and 5'-diphosphate-guanosine-3'-diphosphate (collectively (p)ppGpp) and generates global changes in gene expression and metabolism that enable bacteria to adapt to and survive these challenges. Borrelia burgdorferi encounters multiple stressors in its cycling between ticks and mammals that could trigger the stringent response.

View Article and Find Full Text PDF

The genome of Borrelia burgdorferi, the causative agent of Lyme disease, is comprised of a large linear chromosome and numerous smaller linear and circular plasmids. B. burgdorferi exhibits substantial genomic variation, and previous studies revealed genotype-specific variation at the right chromosomal telomere.

View Article and Find Full Text PDF

The mammalian gastrointestinal (GI) tract is colonized by a complex consortium of bacterial species. Bacteria engage in chemical signaling to coordinate population-wide behavior. However, it is unclear if chemical sensing plays a role in establishing mammalian host-bacterial commensal relationships.

View Article and Find Full Text PDF

Two-component systems (TCS) are universal among bacteria and play critical roles in gene regulation. Our understanding of the contributions of TCS in the biology of the Borrelia is just now beginning to develop. Borrelia burgdorferi, a causative agent of Lyme disease, harbours a TCS comprised of open reading frames (ORFs) BB0419 and BB0420.

View Article and Find Full Text PDF

Lyme borreliosis, caused by the tick-borne bacterium Borrelia burgdorferi, has become the most common vector-borne disease in North America over the last three decades. To understand the dynamics of the epizootic spread and to predict the evolutionary trajectories of B. burgdorferi, accurate information on the population structure and the evolutionary relationships of the pathogen is crucial.

View Article and Find Full Text PDF

Clinical and murine studies suggest that there is a differential pathogenicity of different genotypes of Borrelia burgdorferi, the spirochetal agent of Lyme disease. Comparative genome hybridization was used to explore the relationship between different genotypes. The chromosomes of all studied isolates were highly conserved (>93%) with respect to both sequence and gene order.

View Article and Find Full Text PDF

Extension of molecular genetics studies in Borrelia burgdorferi has been hampered by a lack of a variety of antibiotic resistance selective markers. Such markers are critical for isolation of B. burgdorferi strains with multiple mutants, for complementation with different cloning vectors, and for methods such as negative selection and reporter genes.

View Article and Find Full Text PDF

Susceptibility testing of laboratory strains and clinical isolates of Borrelia burgdorferi indicates that resistance to erythromycin is present in them. Evaluation of the MICs, minimal bactericidal concentrations, and kinetics of bacterial killing of erythromycin suggests that this resistance is increased by preexposure to the antibiotic, is dependent on inoculum size, and may be the result of selection of subpopulations of bacterial cells with increased resistance.

View Article and Find Full Text PDF