Nanocomposites SnO/MnO with various manganese content (up to [Mn]/[Sn] = 10 mol. %) and different manganese distribution were prepared by wet chemical technique and characterized by X-ray diffraction, scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis and mapping, IR and Raman spectroscopy, total reflection X-ray fluorescence, mass-spectrometry with inductive-coupled plasma (ICP-MS), X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR) spectroscopy. A different distribution of manganese between the volume and the surface of the SnO crystallites was revealed depending on the total Mn concentration.
View Article and Find Full Text PDFGallium(III) oxide is a promising functional wide-gap semiconductor for high temperature gas sensors of the resistive type. Doping of GaO with tin improves material conductivity and leads to the complicated influence on phase content, microstructure, adsorption sites, donor centers and, as a result, gas sensor properties. In this work, GaO and GaO(Sn) samples with tin content of 0-13 at.
View Article and Find Full Text PDFContinuous monitoring of greenhouse gases with high spatio-temporal resolution has lately become an urgent task because of tightening environmental restrictions. It may be addressed with an economically efficient solution, based on semiconductor metal oxide gas sensors. In the present work, CO detection in the relevant concentration range and ambient conditions was successfully effectuated by fine-particulate LaO-based materials.
View Article and Find Full Text PDFUnderstanding ammonia oxidation over metal oxide surfaces is crucial for improving its detection with resistive type gas sensors. Formation of NO during this process makes sensor response and calibration unstable. Cr-doping of nanocrystalline metal oxides has been reported to suppress NO sensitivity and improve response towards NH , however the exact mechanism of such chromium action remained unknown.
View Article and Find Full Text PDFImprovement of sensitivity, lower detection limits, stability and reproducibility of semiconductor metal oxide gas sensor characteristics are required for their application in the fields of ecological monitoring, industrial safety, public security, express medical diagnostics, etc. Facile and scalable single step flame spray pyrolysis (FSP) synthesis of bimetal AuPd sensitized nanocrystalline SnO is reported. The materials chemical composition, structure and morphology has been studied by XRD, XPS, HAADFSTEM, BET, ICP-MS techniques.
View Article and Find Full Text PDFTo obtain a nanocrystalline SnO₂ matrix and mono- and bimetallic nanocomposites SnO₂/Pd, SnO₂/Pt, and SnO₂/PtPd, a flame spray pyrolysis with subsequent impregnation was used. The materials were characterized using X-ray diffraction (XRD), a single-point BET method, transmission electron microscopy (TEM), and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) with energy dispersive X-ray (EDX) mapping. The electronic state of the metals in mono- and bimetallic clusters was determined using X-ray photoelectron spectroscopy (XPS).
View Article and Find Full Text PDFNanocomposites In₂O₃/Ag obtained by ultraviolet (UV) photoreduction and impregnation methods were studied as materials for CO sensors operating in the temperature range 25⁻250 °C. Nanocrystalline In₂O₃ and In₂O₃/Ag nanocomposites were characterized by X-ray diffraction (XRD), single-point Brunauer-Emmet-Teller (BET) method, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) with energy dispersive X-ray (EDX) mapping. The active surface sites were investigated using Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR) spectroscopy and thermo-programmed reduction with hydrogen (TPR-H₂) method.
View Article and Find Full Text PDFUrine analysis gives an insight into the excretion of the administered drug which is related to its reactivity and toxicity. In this work, the capability of inductively coupled plasma mass spectrometry (ICP-MS) to measure ultratrace metal levels was utilized for rapid assaying of gallium originating from the novel gallium anticancer drug, tris(8-quinolinolato)gallium(III) (GaQ(3)), in human urine. Sample dilution with 1% (v/v) HNO(3) as the only required pre-treatment was shown to prevent contamination of the sample introduction system and to reduce polyatomic interferences from sample components.
View Article and Find Full Text PDF