Introduction: Patients who suffer severe traumatic brain injury (sTBI) and cerebral vasospasm (CVS) frequently have posttraumatic cerebral ischemia (PCI).
The Research Question: was to study changes in cerebral microcirculatory bed parameters in sTBI patients with CVS and with or without PCI.
Material And Methods: A total of 136 severe TBI patients were recruited in the study.
Background: Intrahospital transportation (IHT) of patients with traumatic brain injury (TBI) is common and may have adverse consequences, incurring inherent risks. The data on the frequency and severity of clinical complications linked with IHT are contradictory, and there is no agreement on whether it is safe or potentially challenging for neurocritical care unit patients. Continuous intracranial pressure (ICP) monitoring is essential in neurointensive care.
View Article and Find Full Text PDFIntroduction: The relationship between arterial and venous blood flow in moderate-to-severe traumatic brain injury (TBI) is poorly understood.
The Research Question: was to compare differences in perfusion computed tomography (PCT)-derived arterial and venous cerebral blood flow (CBF) in moderate-to-severe TBI as an indication of changes in cerebral venous outflow patterns referenced to arterial inflow.
Material And Methods: Moderate-to-severe TBI patients (women 53; men 74) underwent PCT and were stratified into 3 groups: I (moderate TBI), II (diffuse severe TBI without surgery), and III (severe TBI after the surgery).
We compared differences in perfusion computed tomography (PCT)-derived arterial and venous cerebral blood flow (CBF) in moderate-to-severe traumatic brain injury (TBI) as an indication of changes in cerebral venous outflow patterns referenced to arterial inflow. Moderate-to-severe TBI patients (women 53; men 74) underwent PCT and were stratified into 3 groups: I (moderate TBI), II (diffuse severe TBI without surgery), and III (diffuse severe TBI after the surgery). Arterial and venous CBF was measured by PCT in both the middle cerebral arteries (CBFmca) and the upper sagittal sinus (CBFuss).
View Article and Find Full Text PDFObjective: Since the start of the SARS-CoV-2 (COVID-19) pandemic, it has become clear that the brain is one of the main targets for acute and chronic damage. Although neurodegenerative changes have yet to be investigated, there is already a large body of data on damage to its fiber tracts. A mobile eye tracker is possibly one of the best tools to study such damage in a COVID hospital setting.
View Article and Find Full Text PDFBackground: Critical closing pressure (CrCP) is the pressure below which local pial blood pressure is inadequate to prevent blood flow cessation. The state of cerebral CrCP in patients with concomitant moderate-to-severe traumatic brain injury (cTBI) after brain lesions surgery remains poorly understood.
Aim: The aim of our study was to establish the dynamics of CrCP after intracranial surgery in traumatic brain injury (TBI) patients with polytrauma.
The purpose of our study was to assess the dynamics of local cerebral oxygenation (LCO) by near-infrared spectroscopy (NIRS) during transcranial direct current stimulation (tDCS) in the acute stage of mild traumatic brain injury (mTBI). Fifty-seven mTBI patients (18 women and 39 men, 35 ± 11.7 years old, GCS 13.
View Article and Find Full Text PDFUnlabelled: The critical closing pressure (CrCP) is the pressure below which the local pial blood pressure is inadequate to prevent blood flow cessation. The cerebral CrCP in concomitant traumatic brain injury (TBI) and intracranial hematomas (TBI + ICH) remains understudied. The aim was to determine the status of the CrCP at сTBI with and without the ICH development.
View Article and Find Full Text PDFThe aim was to evaluate the changes in brain tissue oxygenation, assessed by near-infrared spectroscopy (NIRS) during high-definition transcranial direct current stimulation (HD-tDCS) in patients with posttraumatic encephalopathy (PTE). Fifty-two patients with PTE after diffuse, blunt, non-severe traumatic brain injury (TBI) (14 women and 38 men, 31.8 ± 12.
View Article and Find Full Text PDFUnlabelled: The purpose of this study was to investigate the relationship between the development of secondary cerebral ischemia (SCI), intracranial pressure (ICP) and cerebrovascular reactivity (CVR) after traumatic brain injury (TBI).
Methods: 89 patients with severe TBI with ICP monitoring were studied retrospectively. The mean age was 36.
Introduction: The knowledge of conservative treatment modalities for a chronic subdural hematoma (CSDH) is still based on low-grade evidence. The purpose of this study was to evaluate the condition of the microcirculation and autoregulation in the perifocal CSDH zone for understanding of the mechanism of CSDH development.
Methods: Cerebral microcirculation was evaluated in patients with the aid of brain perfusion computed tomography (PCT) within the first day.
Aim: The purpose of this study was to study changes in cerebral microcirculation parameters in the development of secondary cerebral ischemia (SCI).
Methods: A total of 202 patients with a Glasgow Coma Scale score ≤ 12 after experiencing a traumatic brain injury (TBI) were recruited for the study within 6 h of the injury. All patients were subjected to perfusion computed tomography.
Unlabelled: The aim was to investigate the feasibility of simultaneous comparison of cerebral circulation in major vessels and microvasculature in patients suffering traumatic brain injury (TBI) with or without intracranial hematomas (IH).
Methods: 170 patients were divided into two groups: Group 1 - diffuse TBI (75 patients); and Group 2 - TBI with IH (95 patients: 18 epidural, 65 subdural and 12 multiple). Perfusion computed tomography (PCT) for assessment of volumetric cerebral blood flow (CBF) was done 2-15 days after admission to hospital.
Objective: The aim was to evaluate changes in cerebrovascular resistance (CVR) in combined traumatic brain injury (CTBI) in groups with and without intracranial hematomas (IH).
Materials And Methods: Treatment outcomes in 70 patients with CTBI (42 males and 28 females) were studied. Mean age was 35.
The aim of this work was comparison of two algorithms of perfusion computed tomography (PCT) data analysis for evaluation of cerebral microcirculation in the perifocal zone of chronic subdural hematoma (CSDH). Twenty patients with CSDH after polytrauma were included in the study. The same PCT data were assessed quantitatively in cortical brain region beneath the CSDH (zone 1), and in the corresponding contralateral brain hemisphere (zone 2) without and with the use of perfusion calculation mode excluding vascular pixel 'Remote Vessels' (RV); 1st and 2nd analysis method, respectively.
View Article and Find Full Text PDF