Background: Agriculture faces significant global challenges including climate change and an increasing food demand due to a growing population. Addressing these challenges will require the adoption of transformative innovations into biotechnology practice, such as nanotechnology. Recently, nanomaterials have emerged as unmatched tools for their use as biosensors, or as biomolecule delivery vehicles.
View Article and Find Full Text PDFThe global SARS-CoV-2 coronavirus pandemic has led to a surging demand for rapid and efficient viral infection diagnostic tests, generating a supply shortage in diagnostic test consumables including nucleic acid extraction kits. Here, we develop a modular method for high-yield extraction of viral single-stranded nucleic acids by using "capture" ssDNA sequences attached to carbon nanotubes. Target SARS-CoV-2 viral RNA can be captured by ssDNA-nanotube constructs hybridization and separated from the liquid phase in a single-tube system with minimal chemical reagents, for downstream quantitative reverse transcription polymerase chain reaction (RT-qPCR) detection.
View Article and Find Full Text PDFTo effectively track and eliminate COVID-19, it is critical to develop tools for rapid and accessible diagnosis of actively infected individuals. Here, we introduce a single-walled carbon nanotube (SWCNT)-based optical sensing approach toward this end. We construct a nanosensor based on SWCNTs noncovalently functionalized with ACE2, a host protein with high binding affinity for the SARS-CoV-2 spike protein.
View Article and Find Full Text PDFTo effectively track and eliminate COVID-19, it is critical to develop tools for rapid and accessible diagnosis of actively infected individuals. Here, we introduce a single-walled carbon nanotube (SWCNT)-based optical sensing approach towards these ends. We construct a nanosensor based on SWCNTs noncovalently functionalized with ACE2, a host protein with high binding affinity for the SARS-CoV-2 spike protein.
View Article and Find Full Text PDFSingle-walled carbon nanotubes (SWCNT) are used in neuroscience for deep-brain imaging, neuron activity recording, measuring brain morphology, and imaging neuromodulation. However, the extent to which SWCNT-based probes impact brain tissue is not well understood. Here, we study the impact of (GT)-SWCNT dopamine nanosensors on SIM-A9 mouse microglial cells and show SWCNT-induced morphological and transcriptomic changes in these brain immune cells.
View Article and Find Full Text PDFWhen nanoparticles enter biological environments, proteins adsorb to form the "protein corona" which alters nanoparticle biodistribution and toxicity. Herein, we measure protein corona formation on DNA-functionalized single-walled carbon nanotubes (ssDNA-SWCNTs), a nanoparticle used widely for sensing and delivery, in blood plasma and cerebrospinal fluid. We characterize corona composition by mass spectrometry, revealing high-abundance corona proteins involved in lipid binding, complement activation, and coagulation.
View Article and Find Full Text PDFImaging neuromodulation with synthetic probes is an emerging technology for studying neurotransmission. However, most synthetic probes are developed through conjugation of fluorescent signal transducers to preexisting recognition moieties such as antibodies or receptors. We introduce a generic platform to evolve synthetic molecular recognition on the surface of near-infrared fluorescent single-wall carbon nanotube (SWCNT) signal transducers.
View Article and Find Full Text PDFNoncovalent adsorption of DNA on nanoparticles has led to their widespread implementation as gene delivery tools and optical probes. Yet, the behavior and stability of DNA-nanoparticle complexes once applied in biomolecule-rich, in vivo environments remains unpredictable, whereby biocompatibility testing usually occurs in serum. Here, we demonstrate time-resolved measurements of exchange dynamics between solution-phase and adsorbed corona-phase DNA and protein biomolecules on single-walled carbon nanotubes (SWCNTs).
View Article and Find Full Text PDFNeuromodulation plays a critical role in brain function in both health and disease, and new tools that capture neuromodulation with high spatial and temporal resolution are needed. Here, we introduce a synthetic catecholamine nanosensor with fluorescent emission in the near infrared range (1000-1300 nm), near infrared catecholamine nanosensor (nIRCat). We demonstrate that nIRCats can be used to measure electrically and optogenetically evoked dopamine release in brain tissue, revealing hotspots with a median size of 2 µm.
View Article and Find Full Text PDFSurface engineering of nanoparticles has recently emerged as a promising technique for synthetic molecular recognition of biological analytes. In particular, the use of synthetic heteropolymers adsorbed onto the surface of a nanoparticle can yield selective detection of a molecular target. Synthetic molecular recognition has unique advantages in leveraging the photostability, versatility, and exceptional chemical stability of nanomaterials.
View Article and Find Full Text PDFSemiconducting single-wall carbon nanotubes (SWNTs) are a class of optically active nanomaterial that fluoresce in the near infrared, coinciding with the optical window where biological samples are most transparent. Here, we outline techniques to adsorb amphiphilic polymers and polynucleic acids onto the surface of SWNTs to engineer their corona phases and create novel molecular sensors for small molecules and proteins. These functionalized SWNT sensors are both biocompatible and stable.
View Article and Find Full Text PDFA distinct advantage of nanosensor arrays is their ability to achieve ultralow detection limits in solution by proximity placement to an analyte. Here, we demonstrate label-free detection of individual proteins from Escherichia coli (bacteria) and Pichia pastoris (yeast) immobilized in a microfluidic chamber, measuring protein efflux from single organisms in real time. The array is fabricated using non-covalent conjugation of an aptamer-anchor polynucleotide sequence to near-infrared emissive single-walled carbon nanotubes, using a variable chemical spacer shown to optimize sensor response.
View Article and Find Full Text PDF