Mobile health apps are widely used for breast cancer detection using artificial intelligence algorithms, providing radiologists with second opinions and reducing false diagnoses. This study aims to develop an open-source mobile app named "BraNet" for 2D breast imaging segmentation and classification using deep learning algorithms. During the phase off-line, an SNGAN model was previously trained for synthetic image generation, and subsequently, these images were used to pre-trained SAM and ResNet18 segmentation and classification models.
View Article and Find Full Text PDFColposcopy imaging is widely used to diagnose, treat and follow-up on premalignant and malignant lesions in the vulva, vagina, and cervix. Thus, deep learning algorithms are being used widely in cervical cancer diagnosis tools. In this study, we developed and preliminarily validated a model based on the Unet network plus SVM to classify cervical lesions on colposcopy images.
View Article and Find Full Text PDF