Publications by authors named "Darshana Kadekar"

The worldwide reduction in the use of antibiotics in animal feed is fueling the need for alternatives for the prevention and control of poultry intestinal diseases such as necrotic enteritis (NE), which is caused by . This is the first report on the use of an intestinal epithelial chicken cell line (CHIC-8E11) to study the pathogenic traits of and to investigate the mode of action of cell-free supernatants (CFS) from probiotic AG01 and subsp. AG02 in reducing the pathogenicity of .

View Article and Find Full Text PDF

Early-life cues shape the immune system during adulthood. However, early-life signaling pathways and their temporal functions are not well understood. Herein, we demonstrate that the cellular inhibitor of apoptosis proteins 1 and 2 (cIAP1/2), which are E3 ubiquitin ligases, sustain interleukin (IL)-17-producing γ δ T cells (γδT17) and group 3 innate lymphoid cells (ILC3) during late neonatal and prepubescent life.

View Article and Find Full Text PDF

Interleukin (IL)-17-producing gamma delta (γδ) T (γδT17) cells are an essential part of innate type 3 immunity against numerous pathogens. At the same time, a large body of evidence from mouse models and human clinical studies suggests that γδT17 cells contribute to the pathogenesis of many inflammatory diseases as well as cancer. It is therefore relevant to elucidate their immunobiology in detail and identify molecules and pathways that can regulate their function.

View Article and Find Full Text PDF

Recurrent herpesvirus infections can manifest in different forms of disease, including cold sores, genital herpes, and encephalitis. There is an incomplete understanding of the genetic and immunological factors conferring susceptibility to recurrent herpes simplex virus 2 (HSV2) infection in the central nervous system (CNS). Here, we describe two adult patients with recurrent HSV2 lymphocytic Mollaret's meningitis that each carry a rare monoallelic variant in the autophagy proteins ATG4A or LC3B2.

View Article and Find Full Text PDF

IL-17-producing RORγt+ γδ T cells (γδT17 cells) are innate lymphocytes that participate in type 3 immune responses during infection and inflammation. Herein, we show that γδT17 cells rapidly proliferate within neonatal lymph nodes and gut, where, upon entry, they upregulate T-bet and coexpress IL-17, IL-22, and IFN-γ in a STAT3- and retinoic acid-dependent manner. Neonatal expansion was halted in mice conditionally deficient in STAT5, and its loss resulted in γδT17 cell depletion from all adult organs.

View Article and Find Full Text PDF

IL-17-producing gamma delta (γδT17) cells are innate lymphocytes critical for antibacterial protection at barrier surfaces such as the skin but also highly pathogenic during inflammation. It is therefore important to understand the cellular and molecular mechanisms that could counter-balance overt γδT17 cell activation. Immune checkpoint receptors (ICRs) deliver inhibitory signals to activated lymphocytes and have been implicated as negative regulators of mouse γδT17 cells.

View Article and Find Full Text PDF

Second mitochondria-derived activator of caspase (SMAC) mimetics (SMs) are selective antagonists of the inhibitor of apoptosis proteins (IAPs), which activate noncanonical NF-κB signaling and promote tumor cell death. Through gene expression analysis, we found that treatment of CD4 T cells with SMs during T helper 17 (T17) cell differentiation disrupted the balance between two antagonistic transcription factor modules. Moreover, proteomics analysis revealed that SMs altered the abundance of proteins associated with cell cycle, mitochondrial activity, and the balance between canonical and noncanonical NF-κB signaling.

View Article and Find Full Text PDF

Background: The limited cell dose in umbilical cord blood (UCB) necessitates ex vivo expansion of UCB. Further, the effective cryopreservation of these expanded cells is important in widening their use in the clinics. During cryopreservation, cells experience oxidative stress due to the generation of reactive oxygen species (ROS).

View Article and Find Full Text PDF

Introduction: Ex vivo expansion of umbilical cord blood (UCB) is attempted to increase cell numbers to overcome the limitation of cell dose. Presently, suspension cultures or feeder mediated co-cultures are performed for expansion of hematopoietic stem cells (HSCs). Mesenchymal stem cells (MSCs) have proved to be efficient feeders for the maintenance of HSCs.

View Article and Find Full Text PDF

Background: Expansion of hematopoietic stem/progenitor cells (HSPCs) is a well-known strategy employed to facilitate the transplantation outcome. We have previously shown that the prevention of apoptosis by the inhibition of cysteine proteases, caspase and calpain played an important role in the expansion and engraftment of cord blood (CB) derived HSPCs. We hypothesize that these protease inhibitors might have maneuvered the adhesive and migratory properties of the cells rendering them to be retained in the bone marrow for sustained engraftment.

View Article and Find Full Text PDF