Extracellular vesicles (EVs)-mediated communication by cancer cells contributes towards the pro-tumoral reprogramming of the tumor microenvironment. Viral infection has been observed to alter the biogenesis and cargo of EVs secreted from host cells in the context of infectious biology. However, the impact of oncolytic viruses on the cargo and function of EVs released by cancer cells remains unknown.
View Article and Find Full Text PDFOncolytic virotherapy is a promising form of cancer treatment that uses viruses to infect and kill cancer cells. In addition to their direct effects on cancer cells, the viruses stimulate various immune responses partly directed against the tumour. Efforts are made to genetically engineer oncolytic viruses to enhance their immunogenic potential.
View Article and Find Full Text PDFInt J Mol Sci
April 2024
Oncolytic virotherapy is a promising immunotherapy approach for cancer treatment that utilizes viruses to preferentially infect and eliminate cancer cells while stimulating the immune response. In this review, we synthesize the current literature on the molecular circuits of immune sensing and response to oncolytic virotherapy, focusing on viral DNA or RNA sensing by infected cells, cytokine and danger-associated-signal sensing by neighboring cells, and the subsequent downstream activation of immune pathways. These sequential sense-and-response mechanisms involve the triggering of molecular sensors by viruses or infected cells to activate transcription factors and related genes for a breadth of immune responses.
View Article and Find Full Text PDFOncolytic viruses show promise in enhancing tumor immunogenicity by releasing immunogenic signals during tumor cell infection and lysis. In this study, we improved the virus-induced tumor immunogenicity of recombinant Semliki Forest virus (rSFV)-based replicon particles by encoding immunogenic cytokines such as C-X-C motif chemokine ligand 10 (CXCL10), FMS-like tyrosine kinase 3 ligand (Flt3L), or interferon-gamma (IFN-ƴ). Real-time imaging and flow cytometry of human cancer cell-based monolayer and spheroid cultures, using LNCaP or PANC-1 cells, revealed effective infection and transgene expression in both models.
View Article and Find Full Text PDFOncolytic virotherapy is a promising form of cancer treatment that uses native or genetically engineered viruses to target, infect and kill cancer cells. Unfortunately, this form of therapy is not effective in a substantial proportion of cancer patients, partly due to the occurrence of infection-resistant tumour cells. To shed new light on the mechanisms underlying therapeutic failure and to discover strategies that improve therapeutic efficacy we designed a cell-based model of viral infection.
View Article and Find Full Text PDFSynthetic biology (SynBio) is a rapidly growing scientific discipline. In the Netherlands, various universities and companies are tackling a variety of opportunities and challenges within this field. In this perspective article, we review the current synthetic biology landscape in the Netherlands across academia, industry, politics, and society.
View Article and Find Full Text PDFSeveral onco-virotherapy candidates have been developed and clinically evaluated for the treatment of cancer, and several are approved for clinical use. In this systematic review we explored the clinical impact of onco-virotherapy compared to other cancer therapies by analyzing factors such as trial design, patient background, therapy design, delivery strategies, and study outcomes. For this purpose, we retrieved clinical studies from three platforms: ClinicalTrials.
View Article and Find Full Text PDFVaccines (Basel)
October 2021
Resistance to therapy is a frequently observed phenomenon in the treatment of cancer, and as with other cancer therapeutics, therapies based on oncolytic viruses also face the challenges of resistance, such as humoral and cellular antiviral responses, and tumor-associated interferon-mediated resistance. In order to identify additional mechanisms of resistance that may contribute to therapeutic failure, we developed a systematic search strategy for studies published in PubMed. We analyzed 6143 articles on oncolytic virotherapy and found that approximately 8% of these articles use resistance terms in the abstract and/or title.
View Article and Find Full Text PDFCancer can be described as a dynamic disease formed by malignant and stromal cells. The cellular interaction between these components in the tumor microenvironment (TME) dictates the development of the disease and can be mediated by extracellular vesicles secreted by tumor cells (TEVs). In this review, we summarize emerging findings about how TEVs modify important aspects of the disease like continuous tumor growth, induction of angiogenesis and metastasis establishment.
View Article and Find Full Text PDFCancer immunotherapy and immunization are the next steps towards safe and effective cancer treatment [...
View Article and Find Full Text PDFThe ability to memorize changes in the environment is present at all biological levels, from social groups and individuals, down to single cells. Trans-generational memory is embedded subcellularly through genetic and epigenetic mechanisms. Evidence that cells process and remember features of the immediate environment using protein sensors is reviewed.
View Article and Find Full Text PDFA simple and new approach in cloud point extraction (CPE) method was developed for removal of picric acid (PA) by the addition of N,N,N,N',N',N'-hexaethyl-ethane-1,2-diammonium dibromide ionic liquid (IL) in non-ionic surfactant Triton X-114 (TX-114). A significant increase in extraction efficiency was found upon the addition of dicationic ionic liquid (DIL) at both nearly neutral and high acidic pH. The effects of different operating parameters such as pH, temperature, time, concentration of surfactant, PA and DIL on extraction of PA were investigated and optimum conditions were established.
View Article and Find Full Text PDF