Self-assembled, polymerized diacetylene (DA) nanostructures and two-dimensional films have been studied over the past two decades for sensor applications because of their straightforward visual readout. DA monomers, when exposed to UV light, polymerize to produce a visibly blue polymer. Blue phase polydiacetylenes (PDAs) when exposed to an external stimuli, such as temperature or UV light, undergo a chromatic phase transition to a fluorescent, visibly red phase.
View Article and Find Full Text PDFLipid bilayer-coated mesoporous silica nanoparticles are unique core-shell nanomaterials currently being developed as drug delivery vehicles. To improve cargo loading and biocirculation, the pore structure and surface chemistry of the particle have been modified and well characterized. However, an understanding of cargo release mechanisms from cellular uptake pathways remains largely unexplored.
View Article and Find Full Text PDFVenezuelan equine encephalitis virus (VEEV) poses a major public health risk due to its amenability for use as a bioterrorism agent and its severe health consequences in humans. ML336 is a recently developed chemical inhibitor of VEEV, shown to effectively reduce VEEV infection in vitro and in vivo. However, its limited solubility and stability could hinder its clinical translation.
View Article and Find Full Text PDFWe use fluorescence microscopy to examine the dynamics of the crowding-induced mixing transition of liquid ordered (L)-liquid disordered (L) phase separated lipid bilayers when the following particles of increasing size bind to either the L or L phase: Ubiquitin, green fluorescent protein (GFP), and nanolipoprotein particles (NLPs) of two diameters. These proteinaceous particles contained histidine-tags, which were phase targeted by binding to iminodiacetic acid (IDA) head groups, via a Cu chelating mechanism, of lipids that specifically partition into either the L phase or L phase. The degree of steric pressure was controlled by varying the size of the bound particle (10-240 kDa) and the amount of binding sites present (i.
View Article and Find Full Text PDFThe selective partitioning of lipid components in phase-separated membranes is essential for domain formation involved in cellular processes. Identifying and tracking the movement of lipids in cellular systems would be improved if we understood how to achieve selective affinity between fluorophore-labeled lipids and membrane assemblies. Here, we investigated the structure and chemistry of membrane lipids to evaluate lipid designs that partition to the liquid ordered (L) phase.
View Article and Find Full Text PDFPolymer vesicles, or polymersomes, are being widely explored as synthetic analogs of lipid vesicles based on their stability, robustness, barrier properties, chemical versatility and tunable physical characteristics. Typical methods used to prepare giant-sized (> 4 µm) vesicles, however, are both time and labor intensive, yielding low numbers of intact polymersomes. Here, we present for the first time the use of gel-assisted rehydration for the rapid and high-yielding formation of giant (>4 µm) polymer vesicles (polymersomes).
View Article and Find Full Text PDFIn an effort to develop a general thermodynamic model from first-principles to describe the mixing behavior of lipid membranes, we examined lipid mixing induced by targeted binding of small (Green Fluorescent Protein (GFP)) and large (nanolipoprotein particles (NLPs)) structures to specific phases of phase-separated lipid bilayers. Phases were targeted by incorporation of phase-partitioning iminodiacetic acid (IDA)-functionalized lipids into ternary lipid mixtures consisting of DPPC, DOPC, and cholesterol. GFP and NLPs, containing histidine tags, bound the IDA portion of these lipids via a metal, Cu(2+), chelating mechanism.
View Article and Find Full Text PDFThe α-helical (AH) domain of the hepatitis C virus nonstructural protein NS5A, anchored at the cytoplasmic leaflet of the endoplasmic reticulum, plays a role in viral replication. However, the peptides derived from this domain also exhibit remarkably broad-spectrum virocidal activity, raising questions about their modes of membrane association. Here, using giant lipid vesicles, we show that the AH peptide discriminates between membrane compositions.
View Article and Find Full Text PDFSelf-organization of lipid molecules into specific membrane phases is key to the development of hierarchical molecular assemblies that mimic cellular structures. While the packing interaction of the lipid tails should provide the major driving force to direct lipid partitioning to ordered or disordered membrane domains, numerous examples show that the headgroup and spacer play important but undefined roles. We report here the development of several new biotinylated lipids that examine the role of spacer chemistry and structure on membrane phase partitioning.
View Article and Find Full Text PDFThe collapse of phase-separating single, supported lipid bilayers, consisting of mixtures of a zwitterionic phospholipid (POPC) and an anionic lipid (DPPA) upon thermal annealing in the presence of ions is examined using a combination of scanning probe, epifluorescence, and ellipsometric microscopies. We find that thermal annealing in the presence of ions in the bathing medium induces an irreversible transition from domain-textured, single supported bilayers to one comprising islands of multibilayer stacks, whose lateral area decays with lamellarity, producing pyramidal staircase "mesa" topography. The higher order lamellae are almost invariably localized above the anionic-lipid rich, gel-phase domains in the parent bilayer and depends on the ions in the bathing medium.
View Article and Find Full Text PDFThe pulsed photolytic chlorine-initiated oxidation of methyl-tert-butyl ketone (MTbuK), di-tert-butyl ketone (DTbuK), and a series of partially deuterated diethyl ketones (DEK) is studied in the gas phase at 8 Torr and 550-650 K. Products are monitored as a function of reaction time, mass, and photoionization energy using multiplexed photoionization mass spectrometry with tunable synchrotron ionizing radiation. The results establish that the primary 3-oxoalkyl radicals of those ketones, formed by abstraction of a hydrogen atom from the carbon atom in γ-position relative to the carbonyl oxygen, undergo a rapid rearrangement resulting in an effective 1,2-acyl group migration, similar to that in a Dowd-Beckwith ring expansion.
View Article and Find Full Text PDFThe characterization of liposomes was undertaken using in-situ microfluidic transmission electron microscopy. Liposomes were imaged without contrast enhancement staining or cryogenic treatment, allowing for the observation of functional liposomes in an aqueous environment. The stability and quality of the liposome structures observed were found to be highly dependent on the surface and liposome chemistries within the liquid cell.
View Article and Find Full Text PDFThis work describes a technique for forming high-density arrays and patterns of membrane-bound proteins through binding to a curvature-organized compositional pattern of metal-chelating lipids (Cu(2+)-DOIDA or Cu(2+)-DSIDA). In this bottom-up approach, the underlying support is an e-beam formed, square lattice pattern of hemispheres. This curvature pattern sorts Cu(2+)-DOIDA to the 200 nm hemispherical lattice sites of a 600 nm × 600 nm unit cell in Ld - Lo phase separated lipid multibilayers.
View Article and Find Full Text PDFConjugated polyelectrolytes (CPEs) are promising materials for generating optoelectronics devices under environmentally friendly processing conditions, but challenges remain to develop methods to define lateral features for improved junction interfaces and direct optoelectronic pathways. We describe here the potential to use a bottom-up approach that employs self-assembly in lipid membranes to form structures to template the selective adsorption of CPEs. Phase separation of gel phase anionic lipids and fluid phase phosphocholine lipids allowed the formation of negatively charged domain assemblies that selectively adsorb a cationic conjugated polyelectrolyte (P2).
View Article and Find Full Text PDFSynthetic interconnected lipid nanotube networks were fabricated on the millimeter scale based on the simple, cooperative interaction between phospholipid vesicles and kinesin-microtubule (MT) transport systems. More specifically, taxol-stabilized MTs, in constant 2D motion via surface absorbed kinesin, extracted and extended lipid nanotube networks from large Lα phase multilamellar liposomes (5-25 μm). Based on the properties of the inverted motility geometry, the total size of these nanofluidic networks was limited by MT surface density, molecular motor energy source (ATP), and total amount and physical properties of lipid source material.
View Article and Find Full Text PDFCurved membranes are an essential feature of dynamic cellular structures, including endocytic pits, filopodia protrusions and most organelles. It has been proposed that specialized proteins induce curvature by binding to membranes through two primary mechanisms: membrane scaffolding by curved proteins or complexes; and insertion of wedge-like amphipathic helices into the membrane. Recent computational studies have raised questions about the efficiency of the helix-insertion mechanism, predicting that proteins must cover nearly 100% of the membrane surface to generate high curvature, an improbable physiological situation.
View Article and Find Full Text PDFThe precise perturbation of gene circuits and the direct observation of signaling pathways in living cells are essential for both fundamental biology and translational medicine. Current optogenetic technology offers a new paradigm of optical control for cells; however, this technology relies on permanent genomic modifications with light-responsive genes, thus limiting dynamic reconfiguration of gene circuits. Here, we report precise control of perturbation and reconfiguration of gene circuits in living cells by optically addressable siRNA-Au nanoantennas.
View Article and Find Full Text PDFDirecting the orientation of molecular assemblies is a key step toward creating complex hierarchical structures that yield higher order functional materials. Here, we demonstrate the directed orientation of functionalized lipid domains and protein-membrane assemblies, using an electric field.
View Article and Find Full Text PDFWe demonstrate the construction of novel protein-lipid assemblies through the design of a lipid-like molecule, DPIDA, endowed with tail-driven affinity for specific lipid membrane phases and head-driven affinity for specific proteins. In studies performed on giant unilamellar vesicles (GUVs) with varying mole fractions of dipalymitoylphosphatidylcholine (DPPC), cholesterol, and diphytanoylphosphatidyl choline (DPhPC), DPIDA selectively partitioned into the more ordered phases, either solid or liquid-ordered (L(o)) depending on membrane composition. Fluorescence imaging established the phase behavior of the resulting quaternary lipid system.
View Article and Find Full Text PDFNef is an HIV-1 accessory protein that directly contributes to AIDS progression. Nef is myristoylated on the N-terminus, associates with membranes, and may undergo a transition from a solution conformation to a membrane-associated conformation. It has been hypothesized that conformational rearrangement enables membrane-associated Nef to interact with cellular proteins.
View Article and Find Full Text PDFTime-resolved fluorescence measurements on liposomes prepared with 1 mol % pyrene-labeled lipids (PLLs) with a headgroup bearing either an alcohol (PSOH) or an imido diacetic acid (PSIDA) and 99 mol % 1-palmitoyl-2-oleyl-3-sn-phosphatidylcholines (POPC) or 99 mol % distearylphosphatidylcholine (DSPC) were performed to investigate how lipids phase separate within the membrane bilayer. Global analysis of the fluorescence decays with the fluorescence blob model (FBM) led to the conclusion that the PLLs were homogeneously distributed on the surface of POPC vesicles while the PLLs phase-separated in the DSPC vesicles. The analysis yielded the fraction of aggregated pyrenes, f(agg).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2010
Deformation of lipid membranes into curved structures such as buds and tubules is essential to many cellular structures including endocytic pits and filopodia. Binding of specific proteins to lipid membranes has been shown to promote membrane bending during endocytosis and transport vesicle formation. Additionally, specific lipid species are found to colocalize with many curved membrane structures, inspiring ongoing exploration of a variety of roles for lipid domains in membrane bending.
View Article and Find Full Text PDFBiologically functional cationic phospholipid-gold nanoplasmonic carriers have been designed to simultaneously exhibit carrier capabilities, demonstrate improved colloidal stability, and show no cytotoxicity under physiological conditions. Cargo, such as RNA, DNA, proteins, or drugs, can be adsorbed onto or incorporated into the cationic phospholipid bilayer membrane. These carriers are able to retain their unique nanoscale optical properties under physiological conditions, making them particularly useful in a wide range of imaging, therapeutic, and gene delivery applications that utilize selective nanoplasmonic properties.
View Article and Find Full Text PDFLipid membranes composed of an iminodiacetic acid functionalized lipid, DSIDA, in a POPC matrix exhibited switchable properties via Cu(2+) recognition to rapidly assemble microdomains that act as high affinity sites for His-tagged proteins. The microdomains demonstrated an order of magnitude enhanced affinity for the proteins compared to homogeneously functionalized POPC membranes with Ni(2+)-NTA DOGS or Cu(2+)-DOIDA, while a rapid release and restoration of the original membrane was accomplished with micromolar concentrations of EDTA.
View Article and Find Full Text PDFPhospholipids comprise an enormous range of chemical structures that provide much of the functionality associated with cellular membranes. We have developed a simple method for incorporating phospholipids onto the surfaces of anisotropic gold nanorods as a stepping-stone for creating responsive and multifunctional nanocomposites. In this report, we demonstrate how phospholipids can be used to control the self-assembly of gold nanorods into agglomerate architectures ranging from open "end-to-end" networks to densely packed "side-to-side" arrays.
View Article and Find Full Text PDF