Context: Women achieving pregnancy with infertility treatment may be at increased risk of stillbirth and neonatal death.
Objective: To assess associations between clomiphene citrate (CC) use and perinatal death.
Design: Whole of population data linkage cohort.
Normal reproductive function and fertility is considered a "sixth vital sign" because disruptions to this sensitive physiological system can forewarn other health issues, including exposure to environmental toxicants. We found that female mice exhibited profound loss of embryos during pre-implantation and fetal development coincident with a change to the source of their drinking water. When female mice were provided with tap water from the building in which they were housed (Water 2), instead of tap water from a neighboring building which was their previous supply (Water 1), ovulated oocytes were degenerated or had impaired meiotic maturation, and failed to form embryos.
View Article and Find Full Text PDFStudy Question: Is oocyte developmental competence associated with changes in granulosa cell (GC) metabolism?
Summary Answer: GC metabolism is regulated by the LH surge, altered by obesity and reproductive aging, and, in women, specific metabolic profiles are associated with failed fertilization versus increased blastocyst development.
What Is Known Already: The cellular environment in which an oocyte matures is critical to its future developmental competence. Metabolism is emerging as a potentially important factor; however, relative energy production profiles between GCs and cumulus cells and their use of differential substrates under normal in vivo ovulatory conditions are not well understood.
Clomiphene citrate is a common treatment for ovulation induction in subfertile women, but its use is associated with elevated risk of adverse perinatal outcomes and birth defects. To investigate the biological plausibility of a causal relationship, this study investigated the consequences in mice for fetal development and pregnancy outcome of periconception clomiphene citrate administration at doses approximating human exposures. A dose-dependent adverse effect of clomiphene citrate given twice in the 36 hours after mating was seen, with a moderate dose of 0.
View Article and Find Full Text PDFMitochondria undergo a myriad of changes during pre-implantation embryo development, including shifts in activity levels and mitochondrial DNA (mtDNA) replication. However, how these distinct aspects of mitochondrial function are linked and their responsiveness to diverse stressors is not well understood. Here, we show that mtDNA content increased between 8-cell embryos and the blastocyst stage, with similar copy numbers per cell in the inner cell mass (ICM) and trophectoderm (TE).
View Article and Find Full Text PDFThe ovarian follicle is a complex structure that protects and helps in the maturation of the oocyte, and then releases it through the controlled molecular and structural remodeling process of ovulation. The progesterone receptor (PGR) has been shown to be essential in regulating ovulation-related gene expression changes. In this study, we found disrupted expression of the cellular adhesion receptor gene in the granulosa cells of PGR mice during ovulation.
View Article and Find Full Text PDFThe Hypoxia Inducible Factor (HIF) transcription factors are imperative for cell adaption to low oxygen conditions and development; however, they also contribute to ischaemic disease and cancer. To identify novel genetic regulators which target the HIF pathway or small molecules for therapeutic use, cell-based reporter systems are commonly used. Here, we present a new, highly sensitive and versatile reporter system, NanoFIRE: a NanoLuciferase and Fluorescent Integrated Reporter Element.
View Article and Find Full Text PDFProgesterone receptor (PGR) plays diverse roles in reproductive tissues and thus coordinates mammalian fertility. In the ovary, rapid acute induction of PGR is the key determinant of ovulation through transcriptional control of a unique set of genes that culminates in follicle rupture. However, the molecular mechanisms for this specialized PGR function in ovulation is poorly understood.
View Article and Find Full Text PDFThe ovary undergoes cycles of hormone production that regulate physiological changes necessary for folliculogenesis, ovulation and luteinisation, ultimately contributing to female reproductive success. Crucial to these biological processes is stage-specific nuclear receptor signalling. While the transcriptional regulatory roles of steroid receptors in female fertility and especially ovarian functions have long been documented, non-steroid receptors also play an important part in regulating gene expression at various stages of ovarian development.
View Article and Find Full Text PDFThe female ovary contains a finite number of oocytes, and their release at ovulation becomes sporadic and disordered with aging and with obesity, leading to loss of fertility. Understanding the molecular defects underpinning this pathology is essential as age of childbearing and obesity rates increase globally. We identify that fibrosis within the ovarian stromal compartment is an underlying mechanism responsible for impaired oocyte release, which is initiated by mitochondrial dysfunction leading to diminished bioenergetics, oxidative damage, inflammation, and collagen deposition.
View Article and Find Full Text PDFProgesterone receptor (PGR) activity is obligatory for mammalian ovulation; however, there is no established direct functional pathway explaining how progesterone receptor completely and specifically regulates oocyte release. This study examined the overarching cell- and isoform-specific effects of the PGR within each cellular compartment of the ovary, using mice null for the PGR (PRKO), as well as isoform-specific null mice. The PGR was expressed in ovarian granulosa and stromal cells and although PRKO ovaries showed no visible histological changes in preovulatory ovarian morphology, follicle rupture did not occur.
View Article and Find Full Text PDFEndocrine disrupting compounds (EDCs) are prevalent and ubiquitous in our environment and have substantial potential to compromise human and animal health. Amongst the chronic health conditions associated with EDC exposure, dysregulation of reproductive function in both females and males is prominent. Human epidemiological studies demonstrate links between EDC exposure and infertility, as well as gestational disorders including miscarriage, fetal growth restriction, preeclampsia, and preterm birth.
View Article and Find Full Text PDFN-cadherin is a homophilic cell-cell adhesion molecule that plays a critical role in maintaining vascular stability and modulating endothelial barrier permeability. Pre-clinical studies have shown that the N-cadherin antagonist peptide, ADH-1, increases the permeability of tumor-associated vasculature thereby increasing anti-cancer drug delivery to tumors and enhancing tumor response. Small molecule library screens have identified a novel compound, LCRF-0006, that is a mimetic of the classical cadherin His-Ala-Val sequence-containing region of ADH-1.
View Article and Find Full Text PDFThe investigation of cell cycle stage-dependent processes in a population of cells is often performed using flow cytometry. While this approach is high-throughput, it is relatively low in resolution and unable to measure phenotypic changes or processes occurring in subcellular compartments. We integrated automated microscopy with newly developed informatics workflow that enabled the quantitation of multiple fluorescent markers from specific subnuclear regions throughout a population of cells.
View Article and Find Full Text PDFBackground/aims: Despite, several studies demonstrating pro-metastatic effects of the metalloproteinase ADAMTS1 in breast cancer, its role in facilitating the metastatic cascade remains unclear. To date there have been limited studies that have examined the expression of ADAMTS1 in primary and metastatic breast cancer tissues.
Methods: We assessed ADAMTS1 mRNA levels in publically available breast cancer sets and analysed ADAMTS1 protein levels by immunohistochemistry in breast tissue microarrays containing normal breast tissue (n=9), primary invasive ductal breast carcinomas (n=79) and metastatic lesions (n=58).
Ovulation is the appropriately timed release of a mature, developmentally competent oocyte from the ovary into the oviduct, where fertilization occurs. Importantly, ovulation is tightly linked with oocyte maturation, demonstrating the interdependency of these two parallel processes, both essential for female fertility. Initiated by pituitary gonadotropins, the ovulatory process is mediated by intrafollicular paracrine factors from the theca, mural, and cumulus granulosa cells, as well as the oocyte itself.
View Article and Find Full Text PDFControl of oncogenes, including ZEB1 and ZEB2, is a major checkpoint for preventing cancer, and loss of this control contributes to many cancers, including breast cancer. Thus tumour suppressors, such as FOXP3, which is mutated or lost in many cancer tissues, play an important role in maintaining normal tissue homeostasis. Here we show for the first time that ZEB2 is selectively down regulated by FOXP3 and also by the FOXP3 induced microRNA, miR-155.
View Article and Find Full Text PDFProblem: The nuclear progesterone receptor (PGR) transcription factor is essential for ovulation; however, the exact mechanisms by which PGR controls ovulation are not known. The aim of this study was to determine whether PGR regulates inflammatory mediators in the ovary.
Method Of Study: Ovaries from mice lacking PGR (PRKO) and heterozygous PR+/- littermates were subjected to microarray analysis of a large panel of inflammatory genes.
The hormone relaxin is important in female reproduction for embryo implantation, cardiovascular function, and during labor and lactation. Relaxin is also synthesized in males by organs of the male tract. We hypothesized that relaxin might be one component of seminal plasma responsible for eliciting the female cytokine response induced in the uterus at mating.
View Article and Find Full Text PDFIn vitro maturation (IVM) offers significant benefits for human infertility treatment and animal breeding, but this potential is yet to be fully realised due to reduced oocyte developmental competence in comparison with in vivo matured oocytes. Cumulus cells occupy an essential position in determining oocyte developmental competence. Here we have examined the areas of deficient gene expression, as determined within microarrays primarily from cumulus cells of mouse COCs, but also other species, between in vivo matured and in vitro matured oocytes.
View Article and Find Full Text PDFCumulus cell-oocyte communication is an essential feature of mammalian reproduction. Established mechanisms involve the bidirectional transfer of ions and small molecules through gap junctions that fundamentally regulate the process of oocyte maturation. Also, well established is the paracrine signaling from the oocyte to the cumulus, which regulates much of the flow of ions and molecules to the oocyte and orchestrates many of the associated local signaling events around ovulation, which is the key to establishing oocyte competence to sustain early embryo development.
View Article and Find Full Text PDFThe Robinson Research Institute of the University of Adelaide convened a multidisciplinary group of n = 33 clinicians, researchers and representatives of government organisations on the 2 October 2014 for a workshop entitled "Promoting fertility and healthy conception. How do we generate greater reproductive health awareness?" The key aim of the workshop was to assess the body of knowledge that informs clinical practice and government policy, and to identify questions and additional information needed by health practitioners and government representatives working in the field of reproductive health and to frame future research and policy. The workshop identified topics that fell mostly into three categories: lifestyle-related, societal and biological factors.
View Article and Find Full Text PDFBeing born small for gestational age (SGA) increases the risk for adverse perinatal outcomes and later life vascular and metabolic disorders. The insulin family plays a vital role in intrauterine growth. We investigated the association of functional SNPs in insulin (INS), insulin receptor (INSR) and insulin receptor substrate 2 (IRS2) with small for gestational age (SGA) pregnancies, uterine and umbilical artery Doppler and plasma insulin level.
View Article and Find Full Text PDF