Publications by authors named "Darryl R Peterson"

Background: Newborn infants are highly vulnerable to oxidative stress. Following birth asphyxia, oxidative injury due to ischemia-reperfusion can result in significant brain and heart damage, leading to death or long-term disability.

Study Question: The study objective was to evaluate the effectiveness of antioxidant gamma-L-glutamyl-L-cysteine (γGlu-Cys) in inhibiting oxidative injury to cultured embryonic cardiomyocytes (H9c2 cells).

View Article and Find Full Text PDF

Treatment for ischemic stroke involves a thrombolytic agent to re-establish blood flow in the brain. However, delayed reperfusion may cause injury to brain capillaries. Previous studies indicate that the antioxidant gamma-L-glutamyl-L-cysteine (γ-Glu-Cys) contributes to reducing reperfusion injury to the cerebral vasculature in rats, when administered intravascularly.

View Article and Find Full Text PDF

Fibrosis is at the core of the high morbidity and mortality rates associated with the complications of diabetes and obesity, including diabetic nephropathy (DN), without any US Food and Drug Administration-approved drugs with this specific target. We recently provided the first evidence that the matricellular protein CCN3 (official symbol NOV) functions in a reciprocal manner, acting on the profibrotic family member CCN2 to inhibit fibrosis in a mesangial cell model of DN. Herein, we used the BT/BR ob/ob mouse as a best model of human obesity and DN progression to determine whether recombinant human CCN3 could be used therapeutically, and the mechanisms involved.

View Article and Find Full Text PDF

The purpose of this study is to further define transport pathways for biological thiols by blood-brain barrier (BBB) endothelial cells, as a means of identifying endogenous cytoprotective mechanisms and potential therapeutic protocols for oxidative injury. Similar low-affininty, high-capacity passive carriers for glutathione (GSH) were observed at both the luminal (blood-facing) and abluminal (brain-facing) plasma membranes of BBB endothelial cells. These carriers are voltage dependent, favoring outward movement of intact peptide across both membrane domains, including efflux at the luminal plasmalemma where γ-glutamyl transpeptidase is located.

View Article and Find Full Text PDF

Prior work in the CCN field, including our own, suggested to us that there might be co-regulatory activity and function as part of the actions of this family of cysteine rich cytokines. CCN2 is now regarded as a major pro-fibrotic molecule acting both down-stream and independent of TGF-beta1, and appears causal in the disease afflicting multiple organs. Since diabetic renal fibrosis is a common complication of diabetes, and a major cause of end stage renal disease (ESRD), we examined the possibility that CCN3 (NOV), might act as an endogenous negative regulator of CCN2 with the capacity to limit the overproduction of extracellular matrix (ECM), and thus prevent, or ameliorate fibrosis.

View Article and Find Full Text PDF

Fibrosis is a major cause of end-stage renal disease, and although initiation factors have been elucidated, uncertainty concerning the downstream pathways has hampered the development of anti-fibrotic therapies. CCN2 (CTGF) functions downstream of transforming growth factor (TGF)-beta, driving increased extracellular matrix (ECM) accumulation and fibrosis. We examined the possibility that CCN3 (NOV), another CCN family member with reported biological activities that differ from CCN2, might act as an endogenous negative regulator of ECM and fibrosis.

View Article and Find Full Text PDF

To date there has been no general consensus regarding the effectiveness of N-acetylcysteine as a protective therapy against contrast medium-induced nephropathy. Several phase III clinical trials have been conducted without a proper understanding of N-acetylcysteine pharmacology, particularly with regard to first-pass hepatic metabolism. A review was conducted of the literature concerning contrast medium-induced nephropathy and new studies of human N-acetylcysteine pharmacology were performed.

View Article and Find Full Text PDF

Dosing and route of administration of N-acetylcysteine (NAC) for protection against cisplatin (CDDP) nephrotoxicity was investigated in rats. Two models of toxicity were tested: a single high dose of CDDP (10 mg/kg intraperitoneally (IP)), and multiple low dose treatments (1 mg/kg IP twice a day for 4 days, 10 days rest, then repeated). NAC (50-1,200 mg/kg) was given to the rats by IP, oral (PO), intravenous (IV) and intra-arterial (IA) routes.

View Article and Find Full Text PDF

Although knowledge of molecular biology and cellular physiology has advanced at a rapid pace, much remains to be learned about delivering chemotherapy and antibodies across the blood-brain barrier (BBB) for the diagnosis and treatment of central nervous system (CNS) disease. A meeting, partially funded by an NIH R13 grant, was convened to discuss the state of the science, current knowledge gaps, and future directions in the delivery of drugs and proteins to the CNS, for the treatment of primary and metastatic brain tumors. Meeting topics included CNS metastases and the BBB, and chemoprotection and chemoenhancement in CNS disorders.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) presents a major obstacle to the treatment of malignant brain tumors and other central nervous system (CNS) diseases. For this reason, a meeting partially funded by an NIH R13 grant was convened to discuss recent advances and future directions in translational research in neuro-oncology and the BBB. Cell biology and transport across the BBB, delivery of agents to the CNS, neuroimaging, angiogenesis, immunotherapy, and gene therapy, as well as glioma, primary CNS lymphoma, and metastases to the CNS were discussed.

View Article and Find Full Text PDF

Thiol chemoprotective agents can reduce chemotherapy side effects, but clinical use is limited due to concerns of impaired chemotherapeutic efficacy. We evaluated whether an optimized bone marrow chemoprotection regimen impaired the efficacy of enhanced chemotherapy against rat brain tumors. Nude rats with intracerebral human lung carcinoma xenografts were treated with carboplatin, melphalan, and etoposide phosphate delivered intra-arterially with osmotic blood-brain barrier disruption (n = 8/group).

View Article and Find Full Text PDF

Brain capillary endothelial cells form the blood-brain barrier. They are connected by extensive tight junctions, and are polarized into luminal (blood-facing) and abluminal (brain-facing) plasma membrane domains. The polar distribution of transport proteins allows for active regulation of brain extracellular fluid.

View Article and Find Full Text PDF

The November 2000 NIH report of the Brain Tumor Progress Review Group identified delivering and targeting therapeutic agents as a priority in the treatment of malignant brain tumors. For this reason, the seventh annual Blood-Brain Barrier Disruption Consortium meeting, partially funded by an NIH R13 Grant, focused on recent advances in targeted delivery to the central nervous system, clinical trials for primary and metastatic brain tumors using enhanced chemotherapy delivery, and strategies to lessen the toxicities associated with dose intensive treatments, using thiols.

View Article and Find Full Text PDF