Red blood cells (RBCs) are known for their remarkable deformability. They repeatedly undergo considerable deformation when passing through the microcirculation. Reduced deformability is seen in physiologically aged RBCs.
View Article and Find Full Text PDFIndividuals who have suffered neurotrauma like a stroke or brachial plexus injury often experience reduced limb functionality. Soft robotic exoskeletons have been successful in assisting rehabilitative treatment and improving activities of daily life but restoring dexterity for tasks such as playing musical instruments has proven challenging. This research presents a soft robotic hand exoskeleton coupled with machine learning algorithms to aid in relearning how to play the piano by 'feeling' the difference between correct and incorrect versions of the same song.
View Article and Find Full Text PDFSickle cell disease is characterized by painful vaso-occlusive crises, in which poorly deformable sickle cells play an important role in the complex vascular obstruction process. Existing techniques are mainly based on optical microscopy and video processing of sickle blood flow under normoxic condition, for measuring vaso-occlusion by a small fraction of dense sickle cells of intrinsic rigidity but not the vaso-occlusion by the rigid, sickled cells due to deoxygenation. Thus, these techniques are not suitable for rapid, point-of-care testing.
View Article and Find Full Text PDFBiotechnol Bioeng
October 2021
This article presents the development and testing of a low-cost (<$60), portable, electrical impedance-based microflow cytometer for single-cell analysis under a controlled oxygen microenvironment. The system is based on an AD5933 impedance analyzer chip, a microfluidic chip, and an Arduino microcontroller operated by a custom Android application. A representative case study on human red blood cells (RBCs) affected by sickle cell disease is conducted to demonstrate the capability of the cytometry system.
View Article and Find Full Text PDFWe present a comprehensive theoretical-experimental framework for quantitative, high-throughput study of cell biomechanics. An improved electrodeformation method has been developed by combing dielectrophoresis and amplitude shift keying, a form of amplitude modulation. This method offers a potential to fully control the magnitude and rate of deformation in cell membranes.
View Article and Find Full Text PDF