Proton nuclear magnetic resonance (NMR) spectroscopy, histological lipid staining, and electron microscopy were used to assess the biochemical and structural changes induced by treating the cultured human breast cell line HBL-100 with the cationic lipophilic phosphonium salts p-(triphenylphosphoniummethyl) benzaldehyde chloride (drug A) and [4-(hydrazinocarboxy)-1-butyl] tris-(4-dimethylaminophenyl) phosphonium chloride (drug B). The major biochemical change detected by (1)H NMR in drug-treated cells was a significant time- and concentration-dependent increase in lipid acyl chain resonances arising from mobile lipids. The amount of NMR-visible lipid strongly correlated with morphometric measurements of oil red O-staining lipid detected in the cytoplasm by light microscopy.
View Article and Find Full Text PDF