Publications by authors named "Darrin D Stuart"

Unlabelled: Small-molecule drugs have enabled the practice of precision oncology for genetically defined patient populations since the first approval of imatinib in 2001. Scientific and technology advances over this 20-year period have driven the evolution of cancer biology, medicinal chemistry, and data science. Collectively, these advances provide tools to more consistently design best-in-class small-molecule drugs against known, previously undruggable, and novel cancer targets.

View Article and Find Full Text PDF

Unlabelled: Phosphoinositide 3-kinase α (PIK3CA) is one of the most mutated genes across cancers, especially breast, gynecologic, and head and neck squamous cell carcinoma tumors. Mutations occur throughout the gene, but hotspot mutations in the helical and kinase domains predominate. The therapeutic benefit of isoform-selective PI3Kα inhibition was established with alpelisib, which displays equipotent activity against the wild-type and mutant enzyme.

View Article and Find Full Text PDF

Half of advanced human melanomas are driven by mutant BRAF and dependent on MAPK signaling. Interestingly, the results of three independent genetic screens highlight a dependency of BRAF-mutant melanoma cell lines on BRAF and ERK2, but not ERK1. ERK2 is expressed higher in melanoma compared with other cancer types and higher than ERK1 within melanoma.

View Article and Find Full Text PDF

Purpose: Targeting RAF for antitumor therapy in RAS-mutant tumors holds promise. Herein, we describe in detail novel properties of the type II RAF inhibitor, LXH254.

Experimental Design: LXH254 was profiled in biochemical, , and assays, including examining the activities of the drug in a large panel of cancer-derived cell lines and a comprehensive set of models.

View Article and Find Full Text PDF

Inhibitors targeting and its downstream kinase MEK produce robust response in patients with advanced -mutant melanoma. However, the duration and depth of response vary significantly between patients; therefore, predicting response remains a significant challenge. Here, we utilized the Novartis collection of patient-derived xenografts to characterize transcriptional alterations elicited by and MEK inhibitors , in an effort to identify mechanisms governing differential response to MAPK inhibition.

View Article and Find Full Text PDF

, an oncogene mutated in nearly one third of human cancers, remains a pharmacologic challenge for direct inhibition except for recent advances in selective inhibitors targeting the G12C variant. Here, we report that selective inhibition of the protein tyrosine phosphatase, SHP2, can impair the proliferation of KRAS-mutant cancer cells and using cell line xenografts and primary human tumors. , sensitivity of KRAS-mutant cells toward the allosteric SHP2 inhibitor, SHP099, is not apparent when cells are grown on plastic in 2D monolayer, but is revealed when cells are grown as 3D multicellular spheroids.

View Article and Find Full Text PDF

Direct pharmacological inhibition of RAS has remained elusive, and efforts to target CRAF have been challenging due to the complex nature of RAF signaling, downstream of activated RAS, and the poor overall kinase selectivity of putative RAF inhibitors. Herein, we describe (LXH254, Aversa, R.; et al.

View Article and Find Full Text PDF

The most frequent genetic alterations in melanoma are gain-of-function (GOF) mutations in BRAF, which result in RAF-MEK-ERK signaling pathway addiction. Despite therapeutic success of RAF and MEK inhibitors in treating BRAF-mutant tumors, a major challenge is the inevitable emergence of drug resistance, which often involves reactivation of the MAPK pathway. Interestingly, resistant tumors are often sensitive to drug withdrawal, suggesting that hyperactivation of the MAPK pathway is not tolerated.

View Article and Find Full Text PDF

Resistance to the RAF inhibitor vemurafenib arises commonly in melanomas driven by the activated BRAF oncogene. Here, we report antitumor properties of RAF709, a novel ATP-competitive kinase inhibitor with high potency and selectivity against RAF kinases. RAF709 exhibited a mode of RAF inhibition distinct from RAF monomer inhibitors such as vemurafenib, showing equal activity against both RAF monomers and dimers.

View Article and Find Full Text PDF

Encorafenib, a selective BRAF inhibitor (BRAFi), has a pharmacologic profile that is distinct from that of other clinically active BRAFis. We evaluated encorafenib in a phase I study in patients with BRAFi treatment-naïve and pretreated -mutant melanoma. The pharmacologic activity of encorafenib was first characterized preclinically.

View Article and Find Full Text PDF

RAS oncogenes have been implicated in >30% of human cancers, all representing high unmet medical need. The exquisite dependency on CRAF kinase in KRAS mutant tumors has been established in genetically engineered mouse models and human tumor cells. To date, many small molecule approaches are under investigation to target CRAF, yet kinase-selective and cellular potent inhibitors remain challenging to identify.

View Article and Find Full Text PDF

The discovery of a highly potent and selective small molecule inhibitor 9 for in vitro target validation of MNK1/2 kinases is described. The aminopyrazine benzimidazole series was derived from an HTS hit and optimized by utilization of a docking model, conformation analysis, and binding pocket comparison against antitargets.

View Article and Find Full Text PDF

The RAS-RAF-MEK (MAP-ERK kinase)-ERK (extracellular signal-regulated kinase) pathway plays a central role in driving proliferation, survival, and metastasis signals in tumor cells, and the prevalence of oncogenic mutations in RAS and BRAF and upstream nodes makes this pathway the focus of significant oncology drug development efforts. This focus has been justified by the recent success of BRAF and MEK inhibitors in prolonging the lives of patients with BRAF(V600E/K)-mutant melanoma. Although it is disappointing that cures are relatively rare, this should not detract from the value of these agents to patients with cancer and the opportunity they provide in allowing us to gain a deeper understanding of drug response and resistance.

View Article and Find Full Text PDF

The RAS-RAF-MEK-ERK pathway is a key driver of proliferation and survival signals in tumor cells and has been the focus of intense drug development efforts over the past 20 years. The recent regulatory approval of RAF inhibitors and a MAP-ERK kinase (MEK) inhibitor for metastatic melanoma provides clinical validation of tumor dependency on this pathway. Unfortunately, the therapeutic benefit of these agents is often short lived and resistance develops within a matter of months.

View Article and Find Full Text PDF

Drug transit through the blood-brain barrier (BBB) is essential for therapeutic responses in malignant glioma. Conventional methods for assessment of BBB penetrance require synthesis of isotopically labeled drug derivatives. Here, we report a new methodology using matrix assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) to visualize drug penetration in brain tissue without molecular labeling.

View Article and Find Full Text PDF

ATP competitive inhibitors of the BRAF(V600E) oncogene paradoxically activate downstream signaling in cells bearing wild-type BRAF (BRAF(WT)). In this study, we investigate the biochemical mechanism of wild-type RAF (RAF(WT)) activation by multiple catalytic inhibitors using kinetic analysis of purified BRAF(V600E) and RAF(WT) enzymes. We show that activation of RAF(WT) is ATP dependent and directly linked to RAF kinase activity.

View Article and Find Full Text PDF

Mutational activation of BRAF is the most prevalent genetic alteration in human melanoma, with ≥50% of tumours expressing the BRAF(V600E) oncoprotein. Moreover, the marked tumour regression and improved survival of late-stage BRAF-mutated melanoma patients in response to treatment with vemurafenib demonstrates the essential role of oncogenic BRAF in melanoma maintenance. However, as most patients relapse with lethal drug-resistant disease, understanding and preventing mechanism(s) of resistance is critical to providing improved therapy.

View Article and Find Full Text PDF

Purpose: The purpose of this preclinical study was to determine the effectiveness of RAF265, a multikinase inhibitor, for treatment of human metastatic melanoma and to characterize traits associated with drug response.

Experimental Design: Advanced metastatic melanoma tumors from 34 patients were orthotopically implanted to nude mice. Tumors that grew in mice (17 of 34) were evaluated for response to RAF265 (40 mg/kg, every day) over 30 days.

View Article and Find Full Text PDF

Disregulated Wnt/beta-catenin signaling has been linked to various human diseases, including cancers. Inhibitors of oncogenic Wnt signaling are likely to have a therapeutic effect in cancers. LRP5 and LRP6 are closely related membrane coreceptors for Wnt proteins.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiongnfeejc7h7bqstuut29vk344hvuqh8ca): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once