Type 1 diabetes mellitus (T1D) is a chronic disease with potentially severe complications, and β-cell deficiency underlies this disease. Despite active research, no therapy to date has been able to induce β-cell regeneration in humans. Here, we discover the β-cell regenerative effects of glucagon receptor antibody (anti-GcgR).
View Article and Find Full Text PDFCancer cachexia is a highly prevalent condition associated with poor quality of life and reduced survival. Tumor-induced perturbations in the endocrine, immune and nervous systems drive anorexia and catabolic changes in adipose tissue and skeletal muscle, hallmarks of cancer cachexia. However, the molecular mechanisms driving cachexia remain poorly defined, and there are currently no approved drugs for the condition.
View Article and Find Full Text PDFUnder homeostatic conditions, animals use well-defined hypothalamic neural circuits to help maintain stable body weight, by integrating metabolic and hormonal signals from the periphery to balance food consumption and energy expenditure. In stressed or disease conditions, however, animals use alternative neuronal pathways to adapt to the metabolic challenges of altered energy demand. Recent studies have identified brain areas outside the hypothalamus that are activated under these 'non-homeostatic' conditions, but the molecular nature of the peripheral signals and brain-localized receptors that activate these circuits remains elusive.
View Article and Find Full Text PDFHepatic accumulation of bile acids is central to the pathogenesis of cholestatic liver diseases. Endocrine hormone fibroblast growth factor 19 (FGF19) may reduce hepatic bile acid levels through modulation of bile acid synthesis and prevent subsequent liver damage. However, FGF19 has also been implicated in hepatocellular carcinogenesis, and consequently, the potential risk from prolonged exposure to supraphysiological levels of the hormone represents a major hurdle for developing an FGF19-based therapy.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC), one of the leading causes of cancer-related death, develops from premalignant lesions in chronically damaged livers. Although it is well established that FGF19 acts through the receptor complex FGFR4-β-Klotho (KLB) to regulate bile acid metabolism, FGF19 is also implicated in the development of HCC. In humans, FGF19 is amplified in HCC and its expression is induced in the liver under cholestatic and cirrhotic conditions.
View Article and Find Full Text PDFTranslation of hepatitis C virus (HCV) is initiated at an internal ribosome entry site (IRES) located at the 5'end of its RNA genome. The HCV IRES is highly structured and greater than 50% of its nucleotides form based-paired helices. We report here that the HCV IRES is an activator of PKR, an interferon-induced enzyme that participates in host cell defense against viral infection.
View Article and Find Full Text PDFIn situ fluorescence/NMR spectroscopic approaches have been used to elucidate the structure, mobility, and domain orientations of troponin C in striated muscle. This led us to consider complementary approaches such as solid-state NMR spectroscopy. The biophysical properties of tryptophan and Trp-analogues, such as fluorotryptophan or hydroxytryptophan, are often exploited to probe protein structure and dynamics using solid-state NMR or fluorescence spectroscopy.
View Article and Find Full Text PDFRNA synthesis using in vitro transcription by phage T7 RNA polymerase allows preparation of milligram quantities of RNA for biochemical, biophysical and structural investigations. Previous purification approaches relied on gel electrophoretic or gravity-flow chromatography methods. We present here a protocol for the in vitro transcription of RNAs and subsequent purification using fast-performance liquid chromatography.
View Article and Find Full Text PDFProtein kinase RNA-activated (PKR) is a serine/threonine kinase that contains an N-terminal RNA-binding domain (dsRNA) and a C-terminal kinase domain. On binding viral dsRNA molecules, PKR can become activated and phosphorylate cellular targets, such as eukaryotic translation initiation factor 2alpha (eIF-2alpha). Phosphorylation of eIF-2alpha results in attenuation of protein translation initiation.
View Article and Find Full Text PDFHost response to viral RNA genomes and replication products represents an effective strategy to combat viral invasion. PKR is a Ser/Thr protein kinase that binds to double-stranded (ds)RNA, autophosphorylates its kinase domain, and subsequently phosphorylates eukaryotic initiation factor 2alpha (eIF2alpha). This results in attenuation of protein translation, preventing synthesis of necessary viral proteins.
View Article and Find Full Text PDFThe RNA-dependent protein kinase (PKR) plays an integral role in the antiviral response to cellular infection. PKR contains three distinct domains consisting of two conserved N-terminal double-stranded RNA (dsRNA)-binding domains, a C-terminal Ser-Thr kinase domain, and a central 80-residue linker. Despite rich structural and biochemical data, a detailed mechanistic explanation of PKR activation remains unclear.
View Article and Find Full Text PDFWe have addressed the electrostatic interactions occurring between the inhibitory region of cardiac troponin I with the C-lobe of troponin C using scanning glycine mutagenesis of the inhibitory region. We report variations in the electric potentials due to mutation of charged residues within this complex based upon the solved NMR structure (1OZS). These results demonstrate the importance of electrostatics within this complex, and it is proposed that electrostatic interactions are integral to the formation and function of larger ternary troponin complexes.
View Article and Find Full Text PDFThe Na(+)/H(+) exchanger isoform 1 is a ubiquitously expressed integral membrane protein that regulates intracellular pH in mammals. We characterized the structural and functional aspects of the critical transmembrane (TM) segment IV. Each residue was mutated to cysteine in cysteine-less NHE1.
View Article and Find Full Text PDFThe NMR solution structure of a highly stable coiled-coil IAAL-E3/K3 has been solved. The E3/K3 coiled-coil is a 42-residue de novo designed coiled-coil comprising three heptad repeats per subunit, stabilized by hydrophobic contacts within the core and electrostatic interactions at the interface crossing the hydrophobic core which direct heterodimer formation. This E3/K3 domain has previously been shown to have high alpha-helical content as well as possessing a low dissociation constant (70 nM).
View Article and Find Full Text PDFThe potential for using paramagnetic lanthanide ions to partially align troponin C in solution as a tool for the structure determination of bound troponin I peptides has been investigated. A prerequisite for these studies is an understanding of the order of lanthanide ion occupancy in the metal binding sites of the protein. Two-dimensional [(1)H, (15)N] HSQC NMR spectroscopy has been used to examine the binding order of Ce(3+), Tb(3+), and Yb(3+) to both apo- and holo-forms of human cardiac troponin C (cTnC) and of Ce(3+) to holo-chicken skeletal troponin C (sTnC).
View Article and Find Full Text PDFWe have utilized 2D [(1)H,(15)N]HSQC NMR spectroscopy to elucidate the binding of three segments of cTnI in native, phosphorylated, and mutated states to cTnC. The near N-terminal region (cRp; residues 34-71) contains the protein kinase C (PKC) phosphorylation sites S41 and S43, the inhibitory region (cIp; residues 128-147) contains another PKC site T142 and a familial hypertrophic cardiomyopathy (FHC) mutation R144G, and the switch region (cSp; residues 147-163) contains the novel p21-activated kinase (PAK) site S149 and another FHC mutation R161W. While S41/S43 phosphorylation of cRp had minimal disruption in the interaction of cRp and cTnC.
View Article and Find Full Text PDFFusion protein constructs of the 56 amino acid globular protein GB-1 with various peptide sequences, coupled with the incorporation of a histidine tag for affinity purification, have generated high-yield fusion protein constructs. Methionine residues were inserted into the constructs to generate pure peptides following CNBr cleavage, yielding a system that is efficient and cost effective for isotopic labeling of peptides for NMR studies and other disciplines such as mass spectroscopy. Six peptides of varying sequences and hydrophobicities were expressed using this GB-1 fusion protein technique and produced soluble fusion protein constructs in all cases.
View Article and Find Full Text PDFCardiac troponin C is the Ca2+-dependent switch for heart muscle contraction. Troponin C is associated with various other proteins including troponin I and troponin T. The interaction between the subunits within the troponin complex is of critical importance in understanding contractility.
View Article and Find Full Text PDFCardiac troponin I (cTnI) is the inhibitory component of the troponin complex, and its interaction with cardiac troponin C (cTnC) plays a critical role in transmitting the Ca(2+) signal to the other myofilament proteins in heart muscle contraction. The switch between contraction and relaxation involves a movement of the inhibitory region of cTnI (cIp) from cTnC to actin-tropomyosin. This region of cTnI is prone to missense mutations in heart disease, and a specific mutation, R145G, has been associated with familial hypertrophic cardiomyopathy.
View Article and Find Full Text PDF