Publications by authors named "Darren Treanor"

Article Synopsis
  • There is a significant risk of reinforcing existing health inequalities in AI health technologies due to biases, primarily stemming from the datasets used.
  • The STANDING Together recommendations focus on transparency in health datasets and proactive evaluation of their impacts on different population groups, informed by a comprehensive research process with over 350 global contributors.
  • The 29 recommendations are divided into guidance for documenting health datasets and strategies for using them, aiming to identify and reduce algorithmic biases while promoting awareness of the inherent limitations in all datasets.
View Article and Find Full Text PDF

Context.—: The current melanoma staging system does not account for 26% of the variance seen in melanoma-specific survival, therefore our ability to predict patient outcome is not fully elucidated. Morphology may be of greater significance than in other solid tumors, with Breslow thickness remaining the strongest prognostic indicator despite being subject to high levels of interobserver variation.

View Article and Find Full Text PDF

Human visual attention allows prior knowledge or expectations to influence visual processing, allocating limited computational resources to only that part of the image that are likely to behaviourally important. Here, we present an image recognition system based on biological vision that guides attention to more informative locations within a larger parent image, using a sequence of saccade-like motions. We demonstrate that at the end of the saccade sequence the system has an improved classification ability compared to the convolutional neural network (CNN) that represents the feedforward part of the model.

View Article and Find Full Text PDF
Article Synopsis
  • This review analyzes various mammography datasets used for AI development in breast cancer screening, focusing on their transparency, content, and accessibility.
  • A search identified 254 datasets, with only 28 being accessible; most datasets came from Europe, East Asia, and North America, raising concerns over poor demographic representation.
  • The findings highlight significant gaps in diversity within these datasets, underscoring the need for better documentation and inclusivity to enhance the effectiveness of AI technologies in breast cancer research.
View Article and Find Full Text PDF

The integration of artificial intelligence (AI) into healthcare is becoming increasingly mainstream. Leveraging digital technologies, such as AI and deep learning, impacts researchers, clinicians, and industry due to promising performance and clinical potential. Digital pathology is now a proven technology, enabling generation of high-resolution digital images from glass slides (whole slide images; WSI).

View Article and Find Full Text PDF

Novel products applying artificial intelligence (AI)-based methods to digital pathology images are touted to have many uses and benefits. However, publicly available information for products can be variable, with few sources of independent evidence. This review aimed to identify public evidence for AI-based products for digital pathology.

View Article and Find Full Text PDF

Whole slide imaging (WSI) of pathology glass slides using high-resolution scanners has enabled the large-scale application of artificial intelligence (AI) in pathology, to support the detection and diagnosis of disease, potentially increasing efficiency and accuracy in tissue diagnosis. Despite the promise of AI, it has limitations. 'Brittleness' or sensitivity to variation in inputs necessitates that large amounts of data are used for training.

View Article and Find Full Text PDF

Background: Currently, there is a paucity of guidelines relating to displays used for digital pathology making procurement decisions, and optimal display configuration, challenging.Experience suggests pathologists have personal preferences for brightness when using a conventional microscope which we hypothesized could be used as a predictor for display setup.

Methods: We conducted an online survey across six NHS hospitals, totalling 108 practicing pathologists, to capture brightness adjustment habits on both microscopes and displays.

View Article and Find Full Text PDF

Ensuring diagnostic performance of artificial intelligence (AI) before introduction into clinical practice is essential. Growing numbers of studies using AI for digital pathology have been reported over recent years. The aim of this work is to examine the diagnostic accuracy of AI in digital pathology images for any disease.

View Article and Find Full Text PDF

Background: Staining tissue samples to visualise cellular detail and tissue structure is at the core of pathology diagnosis, but variations in staining can result in significantly different appearances of the tissue sample. While the human visual system is adept at compensating for stain variation, with the growth of digital imaging in pathology, the impact of this variation can be more profound. Despite the ubiquity of haematoxylin and eosin staining in clinical practice worldwide, objective quantification is not yet available.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are tackling the challenges of finding early-stage markers and effectively treating melanoma by using deep learning to analyze standard pathology slides instead of costly transcriptome data.
  • They developed models that classify these slides into immune subgroups and achieved promising results, showing a strong ability to predict patient survival outcomes based on their immune classification.
  • This approach could enhance clinical workflows by identifying important biomarkers and helping clinicians understand tumor immune landscapes without the need for expensive genetic tests.
View Article and Find Full Text PDF

Artificial intelligence as a medical device is increasingly being applied to healthcare for diagnosis, risk stratification and resource allocation. However, a growing body of evidence has highlighted the risk of algorithmic bias, which may perpetuate existing health inequity. This problem arises in part because of systemic inequalities in dataset curation, unequal opportunity to participate in research and inequalities of access.

View Article and Find Full Text PDF

Background: It has been argued that ethics review committees-e.g., Research Ethics Committees, Institutional Review Boards, etc.

View Article and Find Full Text PDF
Article Synopsis
  • There is a growing interest in using artificial intelligence (AI) in pathology to enhance accuracy and efficiency, but research indicates that clinicians currently have only moderate acceptability towards its integration into practice.
  • The study aimed to identify factors that could either help or hinder the adoption of AI in pathology by employing a realist evaluation framework and conducting a comprehensive literature review.
  • Findings reveal that the potential benefits of AI in pathology depend on the specific context of the pathology department, such as workload size and collaborative work among pathologists, with trust in AI being a crucial factor for its acceptance.
View Article and Find Full Text PDF

The current subjective histopathological assessment of cutaneous melanoma is challenging. The application of image analysis algorithms to histological images may facilitate improvements in workflow and prognostication. To date, several individual algorithms applied to melanoma histological images have been reported with variations in approach and reported accuracies.

View Article and Find Full Text PDF

Aims: A survey of members of the UK Liver Pathology Group (UKLPG) was conducted, comprising consultant histopathologists from across the UK who report liver specimens and participate in the UK National Liver Pathology External Quality Assurance scheme. The aim of this study was to understand attitudes and priorities of liver pathologists towards digital pathology and artificial intelligence (AI).

Methods: The survey was distributed to all full consultant members of the UKLPG via email.

View Article and Find Full Text PDF

Objective: There is increasing interest in using artificial intelligence (AI) in pathology to improve accuracy and efficiency. Studies of clinicians' perceptions of AI have found only moderate acceptability, suggesting further research is needed regarding integration into clinical practice. This study aimed to explore stakeholders' theories concerning how and in what contexts AI is likely to become integrated into pathology.

View Article and Find Full Text PDF

Poor generalizability is a major barrier to clinical implementation of artificial intelligence in digital pathology. The aim of this study was to test the generalizability of a pretrained deep learning model to a new diagnostic setting and to a small change in surgical indication. A deep learning model for breast cancer metastases detection in sentinel lymph nodes, trained on CAMELYON multicenter data, was used as a base model, and achieved an AUC of 0.

View Article and Find Full Text PDF

Artificial intelligence (AI) research is transforming the range tools and technologies available to pathologists, leading to potentially faster, personalized and more accurate diagnoses for patients. However, to see the use of tools for patient benefit and achieve this safely, the implementation of any algorithm must be underpinned by high quality evidence from research that is understandable, replicable, usable and inclusive of details needed for critical appraisal of potential bias. Evidence suggests that reporting guidelines can improve the completeness of reporting of research, especially with good awareness of guidelines.

View Article and Find Full Text PDF

Improvements to patient care through the development of automated image analysis in pathology are restricted by the small image patch size that can be processed by convolutional neural networks (CNNs), when compared to the whole-slide image (WSI). Tile-by-tile processing across the entire WSI is slow and inefficient. While this may improve with future computing power, the technique remains vulnerable to noise from uninformative image areas.

View Article and Find Full Text PDF

There is a growing consensus among scholars, national governments, and intergovernmental organisations of the need to involve the public in decision-making around the use of artificial intelligence (AI) in society. Focusing on the UK, this paper asks how that can be achieved for medical AI research, that is, for research involving the training of AI on data from medical research databases. Public governance of medical AI research in the UK is generally achieved in three ways, namely, via lay representation on data access committees, through patient and public involvement groups, and by means of various deliberative democratic projects such as citizens' juries, citizen panels, citizen assemblies, etc.

View Article and Find Full Text PDF

Digital pathology - the digitalisation of clinical histopathology services through the scanning and storage of pathology slides - has opened up new possibilities for health care in recent years, particularly in the opportunities it brings for artificial intelligence (AI)-driven research. Recognising, however, that there is little scholarly debate on the ethics of digital pathology when used for AI research, this paper summarises what it sees as four key ethical issues to consider when deploying AI infrastructures in pathology, namely, privacy, choice, equity, and trust. The themes are inspired from the authors' experience grappling with the challenge of deploying an ethical digital pathology infrastructure to support AI research as part of the National Pathology Imaging Cooperative (NPIC), a collaborative of universities, hospital trusts, and industry partners largely located across the North of England.

View Article and Find Full Text PDF

Aims: Digital pathology offers the potential for significant benefits in diagnostic pathology, but currently the efficiency of slide viewing is a barrier to adoption. We hypothesised that presenting digital slides for simultaneous viewing of multiple sections of tissue for comparison, as in those with immunohistochemical panels, would allow pathologists to review cases more quickly.

Methods: Novel software was developed to view synchronised parallel tissue sections on a digital pathology workstation.

View Article and Find Full Text PDF