Publications by authors named "Darren S DeLorey"

The autonomic nervous system (ANS) may play a role in the distribution of body fat and the development of obesity and its complications. Features of individuals with Prader-Willi syndrome (PWS) impacted by PWS molecular genetic classes suggest alterations in ANS function; however, these have been rarely studied and presented with conflicting results. The aim of this study was to investigate if the ANS function is altered in PWS.

View Article and Find Full Text PDF

The process of matching skeletal muscle blood flow to metabolism is complex and multi-factorial. In response to exercise, increases in cardiac output, perfusion pressure and local vasodilation facilitate an intensity-dependent increase in muscle blood flow. Concomitantly, sympathetic nerve activity directed to both exercising and non-active muscles increases as a function of exercise intensity.

View Article and Find Full Text PDF

The sympathetic nervous system (SNS) is a critically important regulator of the cardiovascular system. The SNS controls cardiac output and its distribution, as well as peripheral vascular resistance and blood pressure at rest and during exercise. Aging is associated with increased blood pressure and decreased skeletal muscle blood flow at rest and in response to exercise.

View Article and Find Full Text PDF

This study investigated the hypothesis that β-adrenoreceptor-mediated inhibition of sympathetic vasoconstriction would be enhanced in female compared with male rats, and that endurance exercise training would augment β-adrenoreceptor-mediated inhibition of sympathetic vasoconstriction in male and female rats. Sprague-Dawley rats were randomized into sedentary (male: = 7; female: = 8) and exercise-trained (male: = 9; female: = 9) groups. Following 4 wk of exercise training or being sedentary, rats were anesthetized and surgically instrumented for stimulation of the lumbar sympathetic chain, muscle contraction and measurement of arterial blood pressure and femoral artery blood flow (FBF).

View Article and Find Full Text PDF

Dietary nitrate ( ) supplementation has been shown to reduce resting blood pressure. However, the mechanism responsible for the reduction in blood pressure has not been identified. Dietary supplementation may increase nitric oxide (NO) bioavailability, and NO has been shown to inhibit sympathetic vasoconstriction in resting and contracting skeletal muscle.

View Article and Find Full Text PDF

Sympathetic nervous system (SNS) vasoconstriction is primarily achieved through the binding of norepinephrine (NE) to α-adrenoreceptors. However, NE may also bind to β-adrenoreceptors and cause vasodilation that may oppose/blunt SNS-mediated vasoconstriction. Therefore, this study investigated the hypothesis that β-adrenoreceptor-mediated vasodilation opposes evoked vasoconstriction in resting and contracting skeletal muscle.

View Article and Find Full Text PDF

Background: Testicular cancer survivors (TCS) are at increased risk of cancer-related fatigue (CRF), psychosocial impairment, and poor mental health-related quality of life (HRQoL). Here, we examine the effects of high-intensity interval training (HIIT) on patient-reported outcomes (PROs) in TCS. Secondarily, we explore cardiorespiratory fitness as a mediator of intervention effects and select baseline characteristics as moderators of intervention effects.

View Article and Find Full Text PDF

Background: Testicular cancer survivors (TCS) have an increased risk of treatment-related cardiovascular disease (CVD), which may limit their overall survival. We evaluated the effects of high-intensity aerobic interval training (HIIT) on traditional and novel CVD risk factors and surrogate markers of mortality in a population-based sample of TCS.

Methods: This phase 2 trial (ClinicalTrials.

View Article and Find Full Text PDF

Sex differences in the neurovascular control of blood pressure and vascular resistance have been reported. However, the mechanisms underlying the modulatory influence of sex have not been fully elucidated. Nitric oxide (NO) has been shown to inhibit sympathetic vasoconstriction in resting and contracting skeletal muscle, and estrogen modulates NO synthase (NOS) expression and NO bioavailability.

View Article and Find Full Text PDF

Cerebral vasomotor reactivity (CVMR) and dynamic cerebral autoregulation (CA) are measured extensively in clinical and research studies. However, the relationship between these measurements of cerebrovascular function is not well understood. In this study, we measured changes in cerebral blood flow velocity (CBFV) and arterial blood pressure (BP) in response to stepwise increases in inspired CO2 concentrations of 3 and 6% to assess CVMR and dynamic CA in 13 healthy young adults [2 women, 32 ± 9 (SD) yr].

View Article and Find Full Text PDF

Exercise training (ET) increases sympathetic vasoconstrictor responsiveness and enhances contraction-mediated inhibition of sympathetic vasoconstriction (i.e., sympatholysis) through a nitric oxide (NO)-dependent mechanism.

View Article and Find Full Text PDF

Key Points: Physical inactivity increases the risk of cardiovascular disease and may alter sympathetic nervous system control of vascular resistance. Hindlimb unweighting (HU), a rodent model of physical inactivity, has been shown to diminish sympathetic vasoconstrictor responsiveness and reduce NO synthase expression in isolated skeletal muscle blood vessels. Our understanding of the effects of HU on sympathetic vascular regulation in vivo is very limited.

View Article and Find Full Text PDF

Key Points: Prenatal hypoxia, one of the most common consequences of complicated pregnancies, leads to intrauterine growth restriction (IUGR) and impairs later-life endothelium-dependent vascular function. Early interventions are needed to ultimately reduce later-life risk for cardiovascular disease. Aerobic exercise training has been shown to prevent cardiovascular diseases.

View Article and Find Full Text PDF

Tetrahydrobiopterin (BH4) is an essential cofactor for the production of nitric oxide (NO) and supplementation with BH4 improves NO-dependent vasodilation. NO also reduces sympathetic vasoconstrictor responsiveness in resting and contracting skeletal muscle. Thus, we hypothesized that supplementation with BH4 would blunt sympathetic vasoconstrictor responsiveness in resting and contracting skeletal muscle.

View Article and Find Full Text PDF

We tested the hypothesis that exercise training would increase neuronal nitric oxide synthase (nNOS)-mediated inhibition of sympathetic vasoconstriction in resting and contracting skeletal muscle. Sprague-Dawley rats (n = 18) were randomized to sedentary or exercise-trained (40 m min(-1), 5° grade; 5 days week(-1) for 4 weeks) groups. Following completion of sedentary behaviour or exercise training, rats were anaesthetized and instrumented with a brachial artery catheter, femoral artery flow probe and stimulating electrodes on the lumbar sympathetic chain.

View Article and Find Full Text PDF

We hypothesized that exercise training (ET) would alter α2-adrenoreceptor-mediated sympathetic vasoconstriction. Sprague-Dawley rats (n = 30) were randomized to sedentary (S), mild- (M) or heavy-intensity (H) treadmill ET groups (5 days per week for 4 weeks). Following the ET component of the study, rats were anaesthetized, and instrumented for lumbar sympathetic chain stimulation, triceps surae muscle contraction and measurement of femoral vascular conductance (FVC).

View Article and Find Full Text PDF

Isoform-specific nitric oxide (NO) synthase (NOS) contributions to NO-mediated inhibition of sympathetic vasoconstriction in resting and contracting skeletal muscle are incompletely understood. The purpose of the present study was to investigate the role of neuronal NOS (nNOS) in the inhibition of sympathetic vasoconstriction in resting and contracting skeletal muscle of healthy rats. We hypothesized that acute pharmacological inhibition of nNOS would augment sympathetic vasoconstriction in resting and contracting skeletal muscle, demonstrating that nNOS is primarily responsible for NO-mediated inhibition of sympathetic vasoconstriction.

View Article and Find Full Text PDF

We hypothesized that acute superoxide (O2(-)) scavenging would attenuate sympathetic vasoconstrictor responsiveness by augmenting nitric oxide (NO)-mediated inhibition of sympathetic vasoconstriction in exercise-trained rats. Sprague-Dawley rats were randomly assigned to sedentary time control (S; n = 7) or mild- (M: 20 m/min, 5° grade; n = 7) or heavy-intensity (H: 40 m/min, 5° grade; n = 7) exercise training (ET) groups and trained 5 days/wk for 4 wk with matched training volume. Following ET, rats were anesthetized and instrumented for lumbar sympathetic chain stimulation and measurement of femoral vascular conductance.

View Article and Find Full Text PDF

We tested the hypothesis that short-term mild- (M) and heavy-intensity (H) exercise training would enhance sympatholysis through a nitric oxide (NO)-dependent mechanism. Sprague-Dawley rats (n = 36) were randomly assigned to sedentary (S) or to M (20 m min(-1) 5% gradient) or H exercise training groups (40 m min(-1) 5% gradient). Rats assigned to M and H groups trained on 5 days week(-1) for 4 weeks, with the volume of training being matched between groups.

View Article and Find Full Text PDF

We tested the hypotheses that 4 wk of exercise training would diminish the magnitude of vasoconstriction in response to sympathetic nerve stimulation and augment endothelium-dependent vasodilation (EDD) in resting skeletal muscle in a training intensity-dependent manner. Sprague-Dawley rats were randomly assigned to sedentary time-control (S), mild- (M; 20 m/min, 5% grade), or heavy-intensity (H; 40 m/min, 5% grade) treadmill exercise groups. Animals trained 5 days/wk for 4 wk with training volume matched between groups.

View Article and Find Full Text PDF

Non-interval and interval training progressions were used to determine (i) the mean rate at which treadmill speed could be incremented daily using a non-interval training progression to train rats to run continuously at different intensities and (ii) the number of training days required for rats to run continuously at different exercise intensities with non-interval- and interval-based training progressions to establish methods of progressive overload for rodent exercise training studies. Rats were randomly assigned to mild-intensity (n = 5, 20 m·min(-1), 5% grade), moderate-intensity (n = 5, 30 m·min(-1), 5% grade), and heavy-intensity non-interval groups (n = 5, 40 m·min(-1), 5% grade) or a heavy-intensity interval (n = 5, 40 m·min(-1), 5% grade) group and ran 5 days·week(-1) for 6 weeks. Non-interval training involved a daily increase of treadmill speed, whereas interval training involved a daily increase of interval time, until the animal could run continuously at a prescribed intensity.

View Article and Find Full Text PDF

The relationship between the adjustment of muscle deoxygenation (Δ[HHb]) and phase II V(O(2p)) during moderate-intensity exercise was examined before (Mod 1) and after (Mod 2) a bout of heavy-intensity "priming" exercise. Moderate intensity V(O(2p)) and Δ[HHb] kinetics were determined in 18 young males (26 ± 3 yr). V(O(2p)) was measured breath-by-breath.

View Article and Find Full Text PDF

The ventricular response to passive heat stress has predominantly been studied in the supine position. It is presently unclear how acute changes in venous return influence ventricular function during heat stress. To address this question, left ventricular (LV) systolic and diastolic function were studied in 17 healthy men (24.

View Article and Find Full Text PDF

Background: Obesity alters breathing mechanics during exercise. Weight loss improves lung function at rest, but the effect of weight loss, especially regional fat loss, on exercise breathing mechanics is unclear. We hypothesized that weight loss, especially a decrease in abdominal fat, would improve breathing mechanics during exercise because of an increase in end-expiratory lung volume (EELV).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionkpg6erstau50e2ii96ci026ajg3kigiu): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once