This study investigated how changes in reservoir water level affect mosquito abundance and malaria transmission in Ethiopia. Digital elevation models of three Ethiopian dams at lowland, midland and highland elevations were used to quantify water surface area and wetted shoreline at different reservoir water levels (70, 75, 80, 85, 90, 95 and 100% full capacity) to estimate surface area of potential mosquito breeding habitat. Reservoir water level drawdown rates of 10, 15 and 20 mm.
View Article and Find Full Text PDFBackground: A growing body of evidence suggests that dams intensify malaria transmission in sub-Saharan Africa. However, the environmental characteristics underpinning patterns in malaria transmission around dams are poorly understood. This study investigated local-scale environmental and meteorological variables linked to malaria transmission around three large dams in Ethiopia.
View Article and Find Full Text PDFBackground: Water level management has been suggested as a potential tool to reduce malaria around large reservoirs. However, no field-based test has been conducted to assess the effect of water level management on mosquito larval abundance in African settings. The objective of the present study is to evaluate the effects of water level drawdown rates on mosquito larval abundance.
View Article and Find Full Text PDFOf all ecosystems, freshwaters support the most dynamic and highly concentrated biodiversity on Earth. These attributes of freshwater biodiversity along with increasing demand for water mean that these systems serve as significant models to understand drivers of global biodiversity change. Freshwater biodiversity changes are often attributed to hydrological alteration by water-resource development and climate change owing to the role of the hydrological regime of rivers, wetlands and floodplains affecting patterns of biodiversity.
View Article and Find Full Text PDFEnvironmental flows are designed to enhance aquatic ecosystems through a variety of mechanisms; however, to date most attention has been paid to the effects on habitat quality and life-history triggers, especially for fish and vegetation. The effects of environmental flows on food webs have so far received little attention, despite food-web thinking being fundamental to understanding of river ecosystems. Understanding environmental flows in a food-web context can help scientists and policy-makers better understand and manage outcomes of flow alteration and restoration.
View Article and Find Full Text PDFBackground: Dams are important to ensure food security and promote economic development in sub-Saharan Africa. However, a poor understanding of the negative public health consequences from issues such as malaria could affect their intended advantages. This study aims to compare the malaria situation across elevation and proximity to dams.
View Article and Find Full Text PDFThe construction of dams in sub-Saharan Africa is pivotal for food security and alleviating poverty in the region. However, the unintended adverse public health implications of extending the spatial distribution of water infrastructure are poorly documented and may minimize the intended benefits of securing water supplies. This paper reviews existing studies on the influence of dams on the spatial distribution of malaria parasites and vectors in sub-Saharan Africa.
View Article and Find Full Text PDFThe provision of safe drinking water is a global issue, and animal production is recognized as a significant potential origin of human infectious pathogenic microorganisms within source water catchments. On-farm management can be used to mitigate livestock-derived microbial pollution in source water catchments to reduce the risk of contamination to potable water supplies. We applied a modified Before-After Control Impact (BACI) design to test if restricting the access of livestock to direct contact with streams prevented longitudinal increases in the concentrations of faecal indicator bacteria and suspended solids.
View Article and Find Full Text PDF