A cryogenic Yb amplifier using two laser materials, Gd3Sc2Al3O12 and Y3Al5O12 (YAG), has been used to obtain 70 W average power at 5 kHz pulse repetition frequency; the output was compressed to 1.6 ps, compared with an input compressible to 1.4 ps.
View Article and Find Full Text PDFWe demonstrate amplification of picosecond laser pulses to 40?mJ at a 2?kHz pulse repetition frequency (PRF) from a two-stage cryogenic chirped-pulse Yb:YAG amplifier, composed of a regenerative amplifier (RGA) and a two-pass booster amplifier. The RGA produces 8.2mJ of energy at 2kHz PRF and 13.
View Article and Find Full Text PDFWe report the experimental observation of temporal vector soliton propagation and collision in a linearly birefringent optical fiber. To the best of the authors' knowledge, this is both the first demonstration of temporal vector solitons with two mutually incoherent component fields, and of vector soliton collisions in a Kerr nonlinear medium. Collisions are characterized by an intensity redistribution between the two components, and the experimental results agree with numerical predictions of the coupled nonlinear Schrödinger equation.
View Article and Find Full Text PDFWe demonstrate, numerically, the existence and stability of multicomponent gap solitons in a Kerr nonlinear medium with a superposed grating based on a derived system of coupled-mode equations. Applications to all-optical logic and signal processing are discussed.
View Article and Find Full Text PDFBeating noise in narrow-linewidth erbium-doped fiber ring lasers puts severe limitations on applications of the lasers. We demonstrate the suppression of beating noise in fiber ring lasers by using a semiconductor optical amplifier in the laser cavity, which acts as a high-pass filter. Two different ring structures are presented as examples to demonstrate this beating noise suppression.
View Article and Find Full Text PDF