Accumulation of α-synuclein into toxic oligomers or fibrils is implicated in dopaminergic neurodegeneration in Parkinson's disease. Here we performed a high-throughput, proteome-wide peptide screen to identify protein-protein interaction inhibitors that reduce α-synuclein oligomer levels and their associated cytotoxicity. We find that the most potent peptide inhibitor disrupts the direct interaction between the C-terminal region of α-synuclein and CHarged Multivesicular body Protein 2B (CHMP2B), a component of the Endosomal Sorting Complex Required for Transport-III (ESCRT-III).
View Article and Find Full Text PDFBackground: Parkinson's disease is a disabling neurodegenerative movement disorder characterized by dopaminergic neuron loss induced by α-synuclein oligomers. There is an urgent need for disease-modifying therapies for Parkinson's disease, but drug discovery is challenged by lack of in vivo models that recapitulate early stages of neurodegeneration. Invertebrate organisms, such as the nematode worm Caenorhabditis elegans, provide in vivo models of human disease processes that can be instrumental for initial pharmacological studies.
View Article and Find Full Text PDFMethods Mol Biol
December 2021
Glycans play an important role in many neuronal processes, such as neurotransmitter release and reuptake, cell-cell communication and adhesion, modulation of ion channel activity, and immune function. Carbohydrate click chemistry is a powerful technique for studying glycan function and dynamics in vitro, in vivo, and ex vivo. Here, we use commercially available synthetic tetraacetylated azido sugars, copper and copper-free click chemistry to metabolically label and analyze primary rat cortical neurons.
View Article and Find Full Text PDFEstimation of the number of dopaminergic neurons in the substantia nigra is a key method in pre-clinical Parkinson's disease research. Currently, unbiased stereological counting is the standard for quantification of these cells, but it remains a laborious and time-consuming process, which may not be feasible for all projects. Here, we describe the use of an image analysis platform, which can accurately estimate the quantity of labeled cells in a pre-defined region of interest.
View Article and Find Full Text PDFMolecular chaperones are critical to maintaining intracellular proteostasis and have been shown to have a protective role against alpha-synuclein-mediated toxicity. Co-chaperone proteins regulate the activity of molecular chaperones and connect the chaperone network to protein degradation and cell death pathways. Bcl-2 associated athanogene 5 (BAG5) is a co-chaperone that modulates proteostasis by inhibiting the activity of Heat shock protein 70 (Hsp70) and several E3 ubiquitin ligases, resulting in enhanced neurodegeneration in models of Parkinson's disease (PD).
View Article and Find Full Text PDFParkinson's disease (PD) is the most common neurodegenerative movement disorder, characterized by prominent degeneration of dopaminergic neurons in the substantia nigra and aggregation of the protein α-synuclein within intraneuronal inclusions known as Lewy bodies. Ninety percent of PD cases are idiopathic while the remaining 10% are associated with gene mutations that affect cellular functions ranging from kinase activity to mitochondrial quality control, hinting at a multifactorial disease process. Mutations in and (the gene coding for α-synuclein) cause monogenic forms of autosomal dominant PD, and polymorphisms in either gene are also associated with increased risk of idiopathic PD.
View Article and Find Full Text PDFCrit Rev Clin Lab Sci
August 2020
Parkinson's disease (PD) is the most common neurodegenerative movement disorder and is characterized by the accumulation of α-synuclein (α-syn) into insoluble aggregates known as Lewy bodies and Lewy neurites in the brain. However, prior to the formation of these large aggregates, α-syn forms oligomers and small fibrils, which are believed to be the pathogenic species leading to the death of neurons in the substantia nigra in disease. The majority of aggregated α-syn is phosphorylated, and it is thought that this post-translational modification may be critical in disease pathogenesis.
View Article and Find Full Text PDFParkinson's disease is a progressive neurodegenerative disorder characterised by the accumulation of misfolded α-synuclein in selected brain regions, including the substantia nigra pars compacta (SNpc), where marked loss of dopaminergic neurons is also observed. Yet, the relationship between misfolded α-synuclein and neurotoxicity currently remains unclear. As the principal route for degradation of misfolded proteins in mammalian cells, the ubiquitin-proteasome system (UPS) is critical for maintenance of cellular proteostasis.
View Article and Find Full Text PDFAs pathogenic Parkin mutations result in the defective clearance of damaged mitochondria, Parkin-dependent mitophagy is thought to be protective against the dopaminergic neurodegeneration observed in Parkinson's disease. Recent studies, however, have demonstrated that Parkin can promote cell death in the context of severe mitochondrial damage by degrading the pro-survival Bcl-2 family member, Mcl-1. Therefore, Parkin may act as a 'switch' that can shift the balance between protective or pro-death pathways depending on the degree of mitochondrial damage.
View Article and Find Full Text PDFMitochondrial dysfunction is a recognized hallmark of neurodegenerative diseases and abnormal mitochondrial fusion-fission dynamics have been implicated in the pathogenesis of neurodegenerative disorders. This study characterizes the effects of metabolic flux inhibitors and activators on mitochondrial fusion dynamics in the neuronal cell culture model of differentiated PC12 cells. Using a real time confocal microscopy assay, it was found that the carnitine palmitoyltransferase I (CPTI) inhibitor, etomoxir, reduced mitochondrial fusion dynamics in a time-dependent manner.
View Article and Find Full Text PDFParkinson's disease is the most common neurodegenerative movement disorder. It arises as a result of neuronal cell death in specific brain regions, notably the substantia nigra pars compacta, and is characterized by the accumulation of α-synuclein in these brain regions. Current pharmacological therapies alleviate the motor symptoms of the disease and are particularly effective in the early stages of the disease.
View Article and Find Full Text PDF