Publications by authors named "Darren Murrey"

Glycyl-tRNA synthetase mutations are associated to the Charcot-Marie-Tooth disease type-2D. The model for Charcot-Marie-Tooth disease type-2D is known best for its early onset severe neuropathic phenotype with findings including reduced axon size, slow conduction velocities and abnormal neuromuscular junction. Muscle involvement remains largely unexamined.

View Article and Find Full Text PDF

Limb girdle muscular dystrophy (LGMD) 2A/R1, caused by mutations in the gene and CAPN3 loss of function, is known to play a role in disease pathogenicity. In this study, AAVrh74.tMCK.

View Article and Find Full Text PDF

In a previous limb-girdle muscular dystrophy type 2D (LGMD2D) clinical trial, robust alpha-sarcoglycan gene expression was confirmed following intramuscular gene () transfer. This paved the way for first-in-human isolated limb infusion (ILI) gene transfer trial to the lower limbs. Delivery of scAAVrh74.

View Article and Find Full Text PDF

The reversibility of neuropathic lysosomal storage diseases, including MPS IIIA, is a major goal in therapeutic development, due to typically late diagnoses and a large population of untreated patients. We used self-complementary adeno-associated virus (scAAV) serotype 9 vector expressing human N-sulfoglucosamine sulfohydrolase (SGSH) to test the efficacy of treatment at later stages of the disease. We treated MPS IIIA mice at 1, 2, 3, 6, and 9 months of age with an intravenous injection of scAAV9-U1a-hSGSH vector, leading to restoration of SGSH activity and reduction of glycosaminoglycans (GAG) throughout the central nervous system (CNS) and somatic tissues at a dose of 5E12 vg/kg.

View Article and Find Full Text PDF

Mucopolysaccharidosis (MPS) IIIA is a neuropathic lysosomal storage disease caused by deficiency in N-sulfoglucosamine sulfohydrolase (SGSH). Genome-wide gene expression microarrays in MPS IIIA mice detected broad molecular abnormalities (greater than or equal to twofold, false discovery rate ≤10) in numerous transcripts (314) in the brain and blood (397). Importantly, 22 dysregulated blood transcripts are known to be enriched in the brain and linked to broad neuronal functions.

View Article and Find Full Text PDF

To date, little is known regarding the etiology and disease mechanisms of Alzheimer's disease (AD). There is a general urgency for novel approaches to advance AD research. In this study, we analyzed blood RNA from female patients with advanced AD and matched healthy controls using genome-wide gene expression microarrays.

View Article and Find Full Text PDF

No treatment is currently available for mucopolysaccharidosis (MPS) IIIB, a neuropathic lysosomal storage disease caused by autosomal recessive defect in α-N-acetylglucosaminidase (NAGLU). In anticipation of a clinical gene therapy treatment for MPS IIIB in humans, we tested the rAAV9-CMV-hNAGLU vector administration to cynomolgus monkeys (n=8) at 1E13 vg/kg or 2E13 vg/kg via intravenous injection. No adverse events or detectable toxicity occurred over a 6-month period.

View Article and Find Full Text PDF

Mucopolysaccharidosis (MPS) IIIB is a devastating neuropathic lysosomal storage disease with complex pathology. This study identifies molecular signatures in peripheral blood that may be relevant to MPS IIIB pathogenesis using a mouse model. Genome-wide gene expression microarrays on pooled RNAs showed dysregulation of 2,802 transcripts in blood from MPS IIIB mice, reflecting pathological complexity of MPS IIIB, encompassing virtually all previously reported and as yet unexplored disease aspects.

View Article and Find Full Text PDF

Cytochrome c assembly requires sulphydryls at the CXXCH haem binding site on the apoprotein and also chemical reduction of the haem co-factor. In yeast mitochondria, the cytochrome haem lyases (CCHL, CC(1) HL) and Cyc2p catalyse covalent haem attachment to apocytochromes c and c(1) . An in vivo indication that Cyc2p controls a reductive step in the haem attachment reaction is the finding that the requirement for its function can be bypassed by exogenous reductants.

View Article and Find Full Text PDF

The electron transport chains in the membranes of bacteria and organelles generate proton-motive force essential for ATP production. The c-type cytochromes, defined by the covalent attachment of heme to a CXXCH motif, are key electron carriers in these energy-transducing membranes. In mitochondria, cytochromes c and c(1) are assembled by the cytochrome c heme lyases (CCHL and CC(1)HL) and by Cyc2p, a putative redox protein.

View Article and Find Full Text PDF