CRISPR-Cas has proven to be a powerful tool for precision genetic engineering in a variety of difficult genetic systems. In the highly tractable yeast S. cerevisiae, CRISPR-Cas can be used to conduct multiple engineering steps in parallel, allowing for engineering of complex metabolic pathways at multiple genomic loci in as little as 1 week.
View Article and Find Full Text PDFCRISPR-Cas genome engineering in yeast has relied on preparation of complex expression plasmids for multiplexed gene knockouts and point mutations. Here we show that co-transformation of a single linearized plasmid with multiple PCR-generated guide RNA (gRNA) and donor DNA cassettes facilitates high-efficiency multiplexed integration of point mutations and large constructs. This technique allowed recovery of marker-less triple-engineering events with 64% efficiency without selection for expression of all gRNAs.
View Article and Find Full Text PDF