Publications by authors named "Darren J Moore"

Loss-of-function mutations in the ATP13A2 (PARK9) gene are implicated in early-onset autosomal recessive Parkinson's disease (PD) and other neurodegenerative disorders. ATP13A2 encodes a lysosomal transmembrane P-type ATPase that is highly expressed in brain and specifically within the substantia nigra pars compacta (SNc). Recent studies have revealed its normal role as a lysosomal polyamine transporter, although its contribution to PD-related pathology remains unclear.

View Article and Find Full Text PDF

In this study, we develop and validate a new Parkinson's disease (PD) mouse model that can be used to better understand how the disease progresses and to test the effects of new, potentially disease-modifying, PD therapies. Our central hypothesis is that mitochondrial dysfunction intercalates with misfolded α-synuclein (α-syn) accumulation in a vicious cycle, leading to the loss of nigral neurons. Our hypothesis builds on the concept that PD involves multiple molecular insults, including mitochondrial dysfunction and aberrant α-syn handling.

View Article and Find Full Text PDF

Although most cases of Parkinson's disease (PD) are sporadic, mutations in over 20 genes are known to cause heritable forms of the disease. Recessive loss-of-function mutations in ATP13A2, a lysosomal transmembrane P5-type ATPase and polyamine exporter, can cause early-onset familial PD. Familial ATP13A2 mutations are also linked to related neurodegenerative diseases, including Kufor-Rakeb syndrome, hereditary spastic paraplegias, neuronal ceroid lipofuscinosis, and amyotrophic lateral sclerosis.

View Article and Find Full Text PDF

Background: LRRK2-targeting therapeutics that inhibit LRRK2 kinase activity have advanced to clinical trials in idiopathic Parkinson's disease (iPD). LRRK2 phosphorylates Rab10 on endolysosomes in phagocytic cells to promote some types of immunological responses. The identification of factors that regulate LRRK2-mediated Rab10 phosphorylation in iPD, and whether phosphorylated-Rab10 levels change in different disease states, or with disease progression, may provide insights into the role of Rab10 phosphorylation in iPD and help guide therapeutic strategies targeting this pathway.

View Article and Find Full Text PDF

Background: LRRK2-targeting therapeutics that inhibit LRRK2 kinase activity have advanced to clinical trials in idiopathic Parkinson's disease (iPD). LRRK2 phosphorylates Rab10 on endolysosomes in phagocytic cells to promote some types of immunological responses. The identification of factors that regulate LRRK2-mediated Rab10 phosphorylation in iPD, and whether phosphorylated-Rab10 levels change in different disease states, or with disease progression, may provide insights into the role of Rab10 phosphorylation in iPD and help guide therapeutic strategies targeting this pathway.

View Article and Find Full Text PDF

In 2011, the UK medical research charity Cure Parkinson's set up the international Linked Clinical Trials (iLCT) committee to help expedite the clinical testing of potentially disease modifying therapies for Parkinson's disease (PD). The first committee meeting was held at the Van Andel Institute in Grand Rapids, Michigan in 2012. This group of PD experts has subsequently met annually to assess and prioritize agents that may slow the progression of this neurodegenerative condition, using a systematic approach based on preclinical, epidemiological and, where possible, clinical data.

View Article and Find Full Text PDF

Leucine-rich repeat kinase 2 (LRRK2) and α-synuclein share enigmatic roles in the pathobiology of Parkinson's disease (PD). mutations are a common genetic cause of PD which, in addition to neurodegeneration, often present with abnormal deposits of α-synuclein in the form of Lewy-related pathology. As Lewy-related pathology is a prominent neuropathologic finding in sporadic PD, the relationship between LRRK2 and α-synuclein has garnered considerable interest.

View Article and Find Full Text PDF

The () gene encodes a core component of the retromer complex essential for the endosomal sorting and recycling of transmembrane cargo. Endo-lysosomal pathway deficits are suggested to play a role in the pathogenesis of neurodegenerative diseases, including Parkinson's disease (PD). Mutations in cause a late-onset, autosomal dominant form of PD, with a single missense mutation (D620N) shown to segregate with disease in PD families.

View Article and Find Full Text PDF

Leucine-rich repeat kinase 2 (LRRK2) and α-synuclein share enigmatic roles in the pathobiology of Parkinson's disease (PD). mutations are a common genetic cause of PD which, in addition to neurodegeneration, often present with abnormal deposits of α-synuclein in the form of Lewy-related pathology. As Lewy-related pathology is a prominent neuropathologic finding in sporadic PD, the relationship between LRRK2 and α-synuclein has garnered considerable interest.

View Article and Find Full Text PDF

Cognitive dysfunction is a salient feature of Parkinson's disease (PD) and Dementia with Lewy bodies (DLB). The onset of dementia reflects the spread of Lewy pathology throughout forebrain structures. The mere presence of Lewy pathology, however, provides limited indication of cognitive status.

View Article and Find Full Text PDF

Background: Mutations in the vacuolar protein sorting 35 ortholog (VPS35) gene cause late-onset, autosomal dominant Parkinson's disease (PD), with a single missense mutation (Asp620Asn, D620N) known to segregate with disease in families with PD. The VPS35 gene encodes a core component of the retromer complex, involved in the endosomal sorting and recycling of transmembrane cargo proteins. VPS35-linked PD is clinically indistinguishable from sporadic PD, although it is not yet known whether VPS35-PD brains exhibit α-synuclein-positive brainstem Lewy pathology that is characteristic of sporadic cases.

View Article and Find Full Text PDF

Background: More than 200 years after James Parkinsondescribed a clinical syndrome based on his astute observations, Parkinson's disease (PD) has evolved into a complex entity, akin to the heterogeneity of other complex human syndromes of the central nervous system such as dementia, motor neuron disease, multiple sclerosis, and epilepsy. Clinicians, pathologists, and basic science researchers evolved arrange of concepts andcriteria for the clinical, genetic, mechanistic, and neuropathological characterization of what, in their best judgment, constitutes PD. However, these specialists have generated and used criteria that are not necessarily aligned between their different operational definitions, which may hinder progress in solving the riddle of the distinct forms of PD and ultimately how to treat them.

View Article and Find Full Text PDF

Unlabelled: Cognitive dysfunction is a salient feature of Parkinson's disease (PD) and Dementia with Lewy bodies (DLB). The onset of dementia reflects the spread of Lewy pathology throughout forebrain structures. The mere presence of Lewy pathology, however, provides limited indication of cognitive status.

View Article and Find Full Text PDF
Article Synopsis
  • Coding variations in the LRRK2 gene linked to Parkinson's disease increase kinase activity, particularly affecting the phosphorylation of specific proteins like S1292 and RAB10.
  • The study aimed to assess the consistency of measuring LRRK2 kinase activity across different labs using established protocols and various cell types.
  • While western blot methods could detect LRRK2 activity in cells and tissues with mutant LRRK2, there was no successful identification of endogenous LRRK2 activity in the tested models, highlighting the need for improved measurement techniques.
View Article and Find Full Text PDF

Perturbations of the endolysosomal pathway have been suggested to play an important role in the pathogenesis of several neurodegenerative diseases, including Parkinson's disease (PD) and Alzheimer's disease (AD). Specifically, VPS35 and the retromer complex play an important role in the endolysosomal system and are implicated in the pathophysiology of these diseases. A single missense mutation in VPS35, Asp620Asn (D620N), is known to cause late-onset, autosomal dominant familial PD.

View Article and Find Full Text PDF

Neurodegenerative diseases are characterized by the selective degeneration of neuronal populations in different brain regions and frequently the formation of distinct protein aggregates that often overlap between diseases. While the causes of many sporadic neurodegenerative diseases are unclear, genes associated with familial or sporadic forms of disease and the underlying cellular pathways involved tend to support common disease mechanisms. Underscoring this concept, mutations in the () gene have been identified to cause late-onset, autosomal dominant familial Parkinson's disease, whereas reduced VPS35 protein levels are reported in vulnerable brain regions of subjects with Alzheimer's disease, neurodegenerative tauopathies such as progressive supranuclear palsy and Pick's disease, and amyotrophic lateral sclerosis.

View Article and Find Full Text PDF

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most frequent cause of late-onset, familial Parkinson's disease (PD), and LRRK2 variants are associated with increased risk for sporadic PD. While advanced age represents the strongest risk factor for disease development, it remains unclear how different age-related pathways interact to regulate LRRK2-driven late-onset PD. In this study, we employ a C.

View Article and Find Full Text PDF

Parkinson's disease is a sporadic and common neurodegenerative movement disorder resulting from the complex interplay between genetic risk, aging and environmental exposure. Familial forms of PD account for ~10% of cases and are known to result from the inheritance of mutations in at least 15 genes. Mutations in the () gene cause late-onset, autosomal dominant familial PD.

View Article and Find Full Text PDF

Mutations in leucine-rich repeat kinase 2 (LRRK2) cause autosomal dominant familial Parkinson's disease (PD), with pathogenic mutations enhancing LRRK2 kinase activity. There is a growing body of evidence indicating that LRRK2 contributes to neuronal damage and pathology both in familial and sporadic PD, making it of particular interest for understanding the molecular pathways that underlie PD. Although LRRK2 has been extensively studied to date, our understanding of the seemingly diverse functions of LRRK2 throughout the cell remains incomplete.

View Article and Find Full Text PDF

Mutations in () instigate an autosomal dominant form of Parkinson's disease (PD). Despite the neuropathological heterogeneity observed in -PD, accumulating evidence suggests that alpha-synuclein and tau pathology are observed in a vast majority of cases. Intriguingly, the presence of protein aggregates spans both -PD and idiopathic disease, supportive of a common pathologic mechanism.

View Article and Find Full Text PDF

Mutations in () are the most common cause of late-onset, autosomal-dominant familial Parkinson's disease (PD). LRRK2 functions as both a kinase and GTPase, and PD-linked mutations are known to influence both enzymatic activities. While PD-linked LRRK2 mutations can commonly induce neuronal damage in culture models, the mechanisms underlying these pathogenic effects remain uncertain.

View Article and Find Full Text PDF

Mutations in Leucine-rich repeat kinase 2 (LRRK2) cause Parkinson's disease (PD). However, the precise function of LRRK2 remains unclear. We report an interaction between LRRK2 and VPS52, a subunit of the Golgi-associated retrograde protein (GARP) complex that identifies a function of LRRK2 in regulating membrane fusion at the trans-Golgi network (TGN).

View Article and Find Full Text PDF

The identification of Parkinson's disease (PD)-associated genes has created a powerful platform to begin to understand and nominate pathophysiological disease mechanisms. Herein, we discuss the genetic and experimental evidence supporting endolysosomal dysfunction as a major pathway implicated in PD. Well-studied familial PD-linked gene products, including LRRK2, VPS35, and α-synuclein, demonstrate how disruption of different aspects of endolysosomal sorting pathways by disease-causing mutations may manifest into PD-like phenotypes in many disease models.

View Article and Find Full Text PDF
Article Synopsis
  • Animal models that mimic the features of Parkinson's disease, such as α-synuclein accumulation and neurodegeneration in the nigrostriatal system, are essential for research in the field.
  • Researchers optimized the preformed fibril (PFF) synucleinopathy model in rodents by varying the amounts of α-syn PFFs injected to enhance α-syn accumulation and neurodegeneration.
  • Results showed that increased doses of α-syn PFFs led to greater inclusion formation and loss of dopamine neurons, alongside observable motor deficits, providing a reliable model for studying disease mechanisms and potential therapies.
View Article and Find Full Text PDF

Misfolded alpha-synuclein (αSyn) is a major constituent of Lewy bodies and Lewy neurites, which are pathological hallmarks of Parkinson's disease (PD). The contribution of αSyn to PD is well established, but the detailed mechanism remains obscure. Using a model in which αSyn aggregation in primary neurons was seeded by exogenously added, preformed αSyn amyloid fibrils (PFF), we found that a majority of pathogenic αSyn (indicated by serine 129 phosphorylated αSyn, ps-αSyn) was membrane-bound and associated with mitochondria.

View Article and Find Full Text PDF