The effect of an electric field on local domain structure near a 24° tilt grain boundary in a 200 nm-thick Pb(ZrTi)O bi-crystal ferroelectric film was probed using synchrotron nanodiffraction. The bi-crystal film was grown epitaxially on SrRuO-coated (001) SrTiO 24° tilt bi-crystal substrates. From the nanodiffraction data, real-space maps of the ferroelectric domain structure around the grain boundary prior to and during application of a 200 kV cm electric field were reconstructed.
View Article and Find Full Text PDFThe tunable properties of thermoplastic elastomers (TPEs), through polymer chemistry manipulations, enable these technologically critical materials to be employed in a broad range of applications. The need to "dial-in" the mechanical properties and responses of TPEs generally requires the design and synthesis of new macromolecules. In these designs, TPEs with nonlinear macromolecular architectures outperform the mechanical properties of their linear copolymer counterparts, but the differences in the deformation mechanism providing enhanced performance are unknown.
View Article and Find Full Text PDFLaser melting, such as that encountered during additive manufacturing, produces extreme gradients of temperature in both space and time, which in turn influence microstructural development in the material. Qualification and model validation of the process itself and the resulting material necessitate the ability to characterize these temperature fields. However, well established means to directly probe the material temperature below the surface of an alloy while it is being processed are limited.
View Article and Find Full Text PDFFinite-element modelling has been used to simulate local strains and stresses within free-standing polycrystalline slabs of W, Cu and W-Cu, heated with free or constrained boundaries. The elastic strain values in crystallites that satisfied the diffraction condition were used to simulate the lattice strain data that would be obtained from diffraction analysis, from which the average stresses within diffracting domains were computed. Comparison of direct-space stresses in the model with the average stresses determined from diffraction analysis shows that the representative volume elements (RVEs) required to obtain equivalent stress/strain values depend on the deformation mode suffered by the material.
View Article and Find Full Text PDFDwell fatigue, the reduction in fatigue life experienced by titanium alloys due to holds at stresses as low as 60% of yield, has been implicated in several uncontained jet engine failures. Dislocation slip has long been observed to be an intermittent, scale-bridging phenomenon, similar to that seen in earthquakes but at the nanoscale, leading to the speculation that large stress bursts might promote the initial opening of a crack. Here we observe such stress bursts at the scale of individual grains in situ, using high energy X-ray diffraction microscopy in Ti-7Al-O alloys.
View Article and Find Full Text PDFThe formation of stacking faults and dislocations in individual austenite (fcc) grains embedded in a polycrystalline bulk Fe-18Cr-10.5Ni (wt.%) steel was investigated by non-destructive high-energy diffraction microscopy (HEDM) and line profile analysis.
View Article and Find Full Text PDFCementitious materials are complex composites that exhibit significant spatial heterogeneity in their chemical composition and micromechanical response. Modern 3-dimensional characterization techniques using X-rays from synchrotron light sources, such as micro-computed tomography (μCT) and far-field high-energy diffraction microscopy (ff-HEDM), are now capable of probing this micromechanical heterogeneity. In this work, the above mentioned techniques are used to understand the varying micromechanical response of crystalline phases (cubic iron oxide and α-quartz) inherently present within an alkali-activated fly ash (AAF) during in-situ confined compression.
View Article and Find Full Text PDFThree-dimensional X-ray diffraction (3DXRD), a method for quantifying the position, orientation and elastic strain of large ensembles of single crystals, has recently emerged as an important tool for studying the mechanical response of granular materials during compaction. Applications have demonstrated the utility of 3DXRD and X-ray computed tomography (XRCT) for assessing strains, particle stresses and orientations, inter-particle contacts and forces, particle fracture mechanics, and porosity evolution . Although past studies employing 3DXRD and XRCT have elucidated the mechanics of spherical particle packings and angular particle packings with a small number of particles, there has been limited effort to date in studying angular particle packings with a large number of particles and in comparing the mechanics of these packings with those composed of a large number of spherical particles.
View Article and Find Full Text PDFA forward modeling diffraction framework is introduced and employed to identify slip system activity in high-energy diffraction microscopy (HEDM) experiments. In the framework, diffraction simulations are conducted on virtual mosaic crystals with orientation gradients consistent with Nye's model of heterogeneous single slip. Simulated diffraction peaks are then compared against experimental measurements to identify slip system activity.
View Article and Find Full Text PDFAn experimental system with in situ thermomechanical loading has been developed to enable high energy synchrotron x-ray diffraction studies of crystalline materials. The system applies and maintains loads of up to 2250 N in uniaxial tension or compression at a frequency of up to 100 Hz. The furnace heats the specimen uniformly up to a maximum temperature of 1200 °C in a variety of atmospheres (oxidizing, inert, reducing) that, combined with in situ mechanical loading, can be used to mimic processing and operating conditions of engineering components.
View Article and Find Full Text PDF