Publications by authors named "Darren A Plumb"

The E-74 like factor 3 (ELF3) is a transcription factor induced by inflammatory factors in various cell types, including chondrocytes. ELF3 levels are elevated in human cartilage from patients with osteoarthritis (OA), and ELF3 contributes to the IL-1β-induced expression of genes encoding Mmp13, Nos2, and Ptgs2/Cox2 in chondrocytes in vitro. Here, we investigated the contribution of ELF3 to cartilage degradation in vivo, using a mouse model of OA.

View Article and Find Full Text PDF

Triple-negative breast cancers (TNBCs) have poor prognosis and lack targeted therapies. Here we identified increased copy number and expression of the PIM1 proto-oncogene in genomic data sets of patients with TNBC. TNBC cells, but not nonmalignant mammary epithelial cells, were dependent on PIM1 for proliferation and protection from apoptosis.

View Article and Find Full Text PDF

We previously showed that repetitive cyclic loading of the mouse knee joint causes changes that recapitulate the features of osteoarthritis (OA) in humans. By applying a single loading session, we characterized the temporal progression of the structural and compositional changes in subchondral bone and articular cartilage. We applied loading during a single 5-minute session to the left tibia of adult (26-week-old) C57Bl/6 male mice at a peak load of 9.

View Article and Find Full Text PDF

The surgical model of destabilization of the medial meniscus (DMM) has become a gold standard for studying the onset and progression of posttraumatic osteoarthritis (OA). The DMM model mimics clinical meniscal injury, a known predisposing factor for the development of human OA, and permits the study of structural and biological changes over the course of the disease. In addition, when applied to genetically modified or engineered mouse models, this surgical procedure permits dissection of the relative contribution of a given gene to OA initiation and/or progression.

View Article and Find Full Text PDF

Endochondral ossification is a highly regulated process that relies on properly orchestrated cell-cell interactions in the developing growth plate. This study is focused on understanding the role of a crucial regulator of cell-cell interactions, the membrane-anchored metalloproteinase ADAM17, in endochondral ossification. ADAM17 releases growth factors, cytokines, and other membrane proteins from cells and is essential for epidermal growth factor receptor (EGFR) signaling and for processing tumor necrosis factor alpha.

View Article and Find Full Text PDF

Objective: Alterations in the mechanical loading environment in joints may have both beneficial and detrimental effects on articular cartilage and subchondral bone, and may subsequently influence the development of osteoarthritis (OA). Using an in vivo tibial loading model, the aim of this study was to investigate the adaptive responses of cartilage and bone to mechanical loading and to assess the influence of load level and duration.

Methods: Cyclic compression at peak loads of 4.

View Article and Find Full Text PDF

In order to characterise the function of the novel fibrillar type XXVII collagen, a series of mice expressing mutant forms of the collagen were investigated. Mice harboring a glycine to cysteine substitution in the collagenous domain were phenotypically normal when heterozygote and displayed a mild disruption of growth plate architecture in the homozygous state. Mice expressing an 87 amino acid deletion in the collagenous domain of collagen XXVII were phenotypically normal as heterozygotes whereas homozygotes exhibited a severe chondrodysplasia and died perinatally from a lung defect.

View Article and Find Full Text PDF

Matrix metalloproteinase (MMP)-13 has a pivotal, rate-limiting function in cartilage remodeling and degradation due to its specificity for cleaving type II collagen. The proximal MMP13 promoter contains evolutionarily conserved E26 transformation-specific sequence binding sites that are closely flanked by AP-1 and Runx2 binding motifs, and interplay among these and other factors has been implicated in regulation by stress and inflammatory signals. Here we report that ELF3 directly controls MMP13 promoter activity by targeting an E26 transformation-specific sequence binding site at position -78 bp and by cooperating with AP-1.

View Article and Find Full Text PDF

The human adult articular chondrocyte is a unique cell type that has reached a fully differentiated state as an end point of development. Within the cartilage matrix, chondrocytes are normally quiescent and maintain the matrix constituents in a low-turnover state of equilibrium. Isolated chondrocytes in culture have provided useful models to study cellular responses to alterations in the environment such as those occurring in different forms of arthritis.

View Article and Find Full Text PDF

Human cartilage is a complex tissue of matrix proteins that vary in amount and orientation from superficial to deep layers and from loaded to unloaded zones. A major challenge to efforts to repair cartilage by stem cell-based and other tissue engineering strategies is the inability of the resident chondrocytes to lay down new matrix with the same structural and resilient properties that it had upon its original formation. This is particularly true of the collagen network, which is susceptible to cleavage once proteoglycans are depleted.

View Article and Find Full Text PDF

GADD45beta (growth arrest- and DNA damage-inducible) interacts with upstream regulators of the JNK and p38 stress response kinases. Previously, we reported that the hypertrophic zone of the Gadd45beta(-/-) mouse embryonic growth plate is compressed, and expression of type X collagen (Col10a1) and matrix metalloproteinase 13 (Mmp13) genes is decreased. Herein, we report that GADD45beta enhances activity of the proximal Col10a1 promoter, which contains evolutionarily conserved AP-1, cAMP-response element, and C/EBP half-sites, in synergism with C/EBP family members, whereas the MMP13 promoter responds to GADD45beta together with AP-1, ATF, or C/EBP family members.

View Article and Find Full Text PDF

We have generated an antiserum to the variable domain of mouse collagen XXVII, a recently discovered novel member of the fibrillar collagen family. Collagen XXVII protein was first detectable in the mouse at embryonic day 12.5 (E12.

View Article and Find Full Text PDF

The type XXVII collagen gene codes for a novel vertebrate fibrillar collagen that is highly conserved in man, mouse, and fish (Fugu rubripes). The pro(alpha)1(XXVII) chain has a domain structure similar to that of the type B clade chains (alpha1(V), alpha3(V), alpha1(XI), and alpha2(XI)). However, compared with other vertebrate fibrillar collagens (types I, II, III, V, and XI), type XXVII collagen has unusual molecular features such as no minor helical domain, a major helical domain that is short and interrupted, and a short chain selection sequence within the NC1 domain.

View Article and Find Full Text PDF