Conventional planar frequency selective surfaces (FSSs) are characterized in the far-field region and they are sensitive to the incidence angle of impinging waves. In this paper, a spherical dome FSS is presented, aiming to provide improved angular stable bandpass filtering performance as compared to its planar counterpart when the FSS is placed in the near-field region of an antenna source. A comparison between the conformal FSS and a finite planar FSS is presented through simulations at the frequency range between 26 to 40 GHz in order to demonstrate the advantages of utilizing the conformal FSS in the near-field.
View Article and Find Full Text PDFInterlaced metallic meshes form a class of three-dimensional metamaterials that exhibit nondispersive, broadband modes at low frequencies, without the low frequency cutoff typical of generic wire grid geometries. However, the experimental observation of these modes has remained an open challenge, both due to the difficulties in fabricating such complex structures and also because the broadband mode is longitudinal and does not couple to free-space radiation (dark mode). Here we report the first experimental observation of the low frequency modes in a block of interlaced meshes fabricated through 3D printing.
View Article and Find Full Text PDF