The interaction between interfacial water and transition metal oxides is a primary enabling step for the oxygen evolution reaction (OER). RuO is a prototypical OER electrocatalyst whose ability to activate interfacial water molecules is essential to its OER activity. We image the dissociation of surface water into OH* and O* on RuO(110), where * denotes adsorbed species, using atomic force microscopy.
View Article and Find Full Text PDFRemote epitaxy is taking center stage in creating freestanding complex oxide thin films with high crystallinity that could serve as an ideal building block for stacking artificial heterostructures with distinctive functionalities. However, there exist technical challenges, particularly in the remote epitaxy of perovskite oxides associated with their harsh growth environments, making the graphene interlayer difficult to survive. Transferred graphene, typically used for creating a remote epitaxy template, poses limitations in ensuring the yield of perovskite films, especially when pulsed laser deposition (PLD) growth is carried out, since graphene degradation can be easily observed.
View Article and Find Full Text PDFSpin waves in magnetic materials are promising information carriers for future computing technologies due to their ultra-low energy dissipation and long coherence length. Antiferromagnets are strong candidate materials due, in part, to their stability to external fields and larger group velocities. Multiferroic antiferromagnets, such as BiFeO (BFO), have an additional degree of freedom stemming from magnetoelectric coupling, allowing for control of the magnetic structure, and thus spin waves, with the electric field.
View Article and Find Full Text PDFOxide heterostructures exhibit a vast variety of unique physical properties. Examples are unconventional superconductivity in layered nickelates and topological polar order in (PbTiO)/(SrTiO) superlattices. Although it is clear that variations in oxygen content are crucial for the electronic correlation phenomena in oxides, it remains a major challenge to quantify their impact.
View Article and Find Full Text PDFMott metal-insulator transitions possess electronic, magnetic, and structural degrees of freedom promising next-generation energy-efficient electronics. A previously unknown, hierarchically ordered, and anisotropic supercrystal state is reported and its intrinsic formation characterized in-situ during a Mott transition in a CaRuO thin film. Machine learning-assisted X-ray nanodiffraction together with cryogenic electron microscopy reveal multi-scale periodic domain formation at and below the film transition temperature (T ≈ 200-250 K) and a separate anisotropic spatial structure at and above T.
View Article and Find Full Text PDFThe functional properties of complex oxides, including magnetism and ferroelectricity, are closely linked to subtle structural distortions. Ultrafast optical excitations provide the means to manipulate structural features and ultimately to affect the functional properties of complex oxides with picosecond-scale precision. We report that the lattice expansion of multiferroic BiFeO following above-bandgap optical excitation leads to distortion of the oxygen octahedral rotation (OOR) pattern.
View Article and Find Full Text PDFThe magnetoelectric behavior of epitaxial Fe-Ga microstructures on top of a (001)-oriented PMN-PT piezoelectric substrate is imaged with magnetic X-ray microscopy. Additionally, the micron-scale strain distribution in PMN-PT is characterized by X-ray microdiffraction and examined with respect to the results of the Fe-Ga magnetoelectric switching. The magnetic reorientation of Fe-Ga is found to be strongly correlated with size, shape, and crystallographic orientation of the microstructures.
View Article and Find Full Text PDFA magnon is a collective excitation of the spin structure in a magnetic insulator and can transmit spin angular momentum with negligible dissipation. This quantum of a spin wave has always been manipulated through magnetic dipoles (that is, by breaking time-reversal symmetry). Here we report the experimental observation of chiral spin transport in multiferroic BiFeO and its control by reversing the ferroelectric polarization (that is, by breaking spatial inversion symmetry).
View Article and Find Full Text PDFThe drive toward non-von Neumann device architectures has led to an intense focus on insulator-to-metal (IMT) and the converse metal-to-insulator (MIT) transitions. Studies of electric field-driven IMT in the prototypical VO thin-film channel devices are largely focused on the electrical and elastic responses of the films, but the response of the corresponding TiO substrate is often overlooked, since it is nominally expected to be electrically passive and elastically rigid. Here, in-operando spatiotemporal imaging of the coupled elastodynamics using X-ray diffraction microscopy of a VO film channel device on TiO substrate reveals two new surprises.
View Article and Find Full Text PDFThe concept of remote epitaxy involves a two-dimensional van der Waals layer covering the substrate surface, which still enable adatoms to follow the atomic motif of the underlying substrate. The mode of growth must be carefully defined as defects, e.g.
View Article and Find Full Text PDFCompetition between ground states at phase boundaries can lead to significant changes in properties under stimuli, particularly when these ground states have different crystal symmetries. A key challenge is to stabilize and control the coexistence of symmetry-distinct phases. Using BiFeO layers confined between layers of dielectric TbScO as a model system, we stabilize the mixed-phase coexistence of centrosymmetric and non-centrosymmetric BiFeO phases at room temperature with antipolar, insulating and polar semiconducting behaviour, respectively.
View Article and Find Full Text PDFThe Ruddlesden-Popper (ABO) compounds are highly tunable materials whose functional properties can be dramatically impacted by their structural phase . The negligible differences in formation energies for different can produce local structural variations arising from small stoichiometric deviations. Here, we present a Python analysis platform to detect, measure, and quantify the presence of different -phases based on atomic-resolution scanning transmission electron microscopy (STEM) images.
View Article and Find Full Text PDFTransport properties of electron-doped cuprate Sr1-xLaxCuO2 thin films have been investigated as a function of doping. In particular, optimal- and over-doped samples were obtained by tuning the Sr:La stoichiometric ratio. Optimal-doped samples show a non-Fermi liquid behavior characterized by linear dependence of the resistivity from room temperature down to intermediate temperature (about 150-170 K).
View Article and Find Full Text PDFOptical excitation leads to ultrafast stress generation in the prototypical multiferroic BiFeO. The time scales of stress generation are set by the dynamics of the population of excited electronic states and the coupling of the electronic configuration to the structure. X-ray free-electron laser diffraction reveals high-wavevector subpicosecond-time scale stress generation following ultraviolet excitation of a BiFeO thin film.
View Article and Find Full Text PDFFerroelectric nanomaterials offer the promise of switchable electronic properties at the surface, with implications for photo- and electrocatalysis. Studies to date on the effect of ferroelectric surfaces in electrocatalysis have been primarily limited to nanoparticle systems where complex interfaces arise. Here, we use MBE-grown epitaxial BaTiO thin films with atomically sharp interfaces as model surfaces to demonstrate the effect of ferroelectric polarization on the electronic structure, intermediate binding energy, and electrochemical activity toward the hydrogen evolution reaction (HER).
View Article and Find Full Text PDFWe grew SrLaCuO thin films and SrCuO/SrLaCuO/SrCuO trilayers by reflection high-energy diffraction-calibrated layer-by-layer molecular beam epitaxy, to study their electrical transport properties as a function of the doping and thickness of the central SrLaCuO layer. For the trilayer samples, as already observed in underdoped SLCO films, the electrical resistivity versus temperature curves as a function of the central layer thickness show, for thicknesses thinner than 20 unit cells, sudden upturns in the low temperature range with the possibility for identifying, in the normal state, the and a temperatures, respectively, separating high-temperature linear behavior and low-temperature quadratic dependence. By plotting the and values as a function of T for both the thin films and the trilayers, the data fall on the same curves.
View Article and Find Full Text PDFAs a real-space technique, atomic-resolution STEM imaging contains both amplitude and geometric phase information about structural order in materials, with the latter encoding important information about local variations and heterogeneities present in crystalline lattices. Such phase information can be extracted using geometric phase analysis (GPA), a method which has generally focused on spatially mapping elastic strain. Here we demonstrate an alternative phase demodulation technique and its application to reveal complex structural phenomena in correlated quantum materials.
View Article and Find Full Text PDFThe prospect of 2-dimensional electron gases (2DEGs) possessing high mobility at room temperature in wide-bandgap perovskite stannates is enticing for oxide electronics, particularly to realize transparent and high-electron mobility transistors. Nonetheless only a small number of studies to date report 2DEGs in BaSnO -based heterostructures. Here, 2DEG formation at the LaScO /BaSnO (LSO/BSO) interface with a room-temperature mobility of 60 cm V s at a carrier concentration of 1.
View Article and Find Full Text PDFInterface quantum materials have yielded a plethora of previously unknown phenomena, including unconventional superconductivity, topological phases, and possible Majorana fermions. Typically, such states are detected at the interface between two insulating constituents by electrical transport, but whether either material is conducting, transport techniques become insensitive to interfacial properties. To overcome these limitations, we use angle-resolved photoemission spectroscopy and molecular beam epitaxy to reveal the electronic structure, charge transfer, doping profile, and carrier effective masses in a layer-by-layer fashion for the interface between the Dirac nodal-line semimetal SrIrO and the correlated metallic Weyl ferromagnet SrRuO.
View Article and Find Full Text PDFAntiferroelectric materials have seen a resurgence of interest because of proposed applications in a number of energy-efficient technologies. Unfortunately, relatively few families of antiferroelectric materials have been identified, precluding many proposed applications. Here, we propose a design strategy for the construction of antiferroelectric materials using interfacial electrostatic engineering.
View Article and Find Full Text PDF