We recently reported laser-triggered release of photosensitive compounds from liposomes containing dipalmitoylphosphatidylcholine (DPPC) and 1,2 bis(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine (DC(8,9)PC). We hypothesized that the permeation of photoactivated compounds occurs through domains of enhanced fluidity in the liposome membrane and have thus called them "Pocket" liposomes. In this study we have encapsulated the red light activatable anticancer photodynamic therapy drug 2-(1-Hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH) (Ex/Em410/670 nm) together with calcein (Ex/Em490/517 nm) as a marker for drug release in Pocket liposomes.
View Article and Find Full Text PDFWe recently reported on the physical characteristics of photo-triggerable liposomes containing dipalmitoylphosphatidylcholine (DPPC), and 1,2-bis (tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine (DC(8,9)PC) carrying a photo agent as their payload. When exposed to a low-intensity 514 nm wavelength (continuous-wave) laser light, these liposomes were observed to release entrapped calcein green (Cal-G; Ex/Em 490/517 nm) but not calcein blue (Cal-B; Ex/Em 360/460 nm). In this study, we have investigated the mechanism for the 514 nm laser-triggered release of the Cal-G payload using several scavengers that are known specifically to inhibit either type I or type II photoreaction pathways.
View Article and Find Full Text PDFIntroduction: In this communication we report on a novel non-invasive methodology in utilizing "soft" energy diagnostic X-rays to indirectly activate a photo-agent utilized in photodynamic therapy (PDT): Photofrin II (Photo II) through X-ray induced luminescence from Gadolinium Oxysulfide (20 micron dimension) particles doped with Terbium: Gd
Objectives: To evaluate the redox state and the spatial distribution of mitochondria in malignant human brain cancer cells grown on different substrates.
Methods: Cellular autofluorescence images were obtained through an inverted fluorescence microscope and the redox fluorometric ratio was evaluated (after the subtraction of background) as the net fluorescence signal through the DAPI filter divided by the net fluorescence signal through the FITC filter. Spatial mitochondria distribution patterns were evaluated by division of the cell area at the midpoint between the nuclear and cell membranes.
Over the past forty years, many efforts have been devoted to study low power laser light interactions with biological systems. Some of the investigations were performed in-vitro, on bulk cell populations. Our present work was undertaken to apply specially engineered fiber-optic based nano-probes for the precise delivery of laser light on to a single cell and to observe production of low power laser light induced reactive oxygen species (ROS).
View Article and Find Full Text PDF