Publications by authors named "Darrel E Goll"

Myofibrillar proteins must be removed from the myofibril before they can be turned over metabolically in functioning muscle cells. It is uncertain how this removal is accomplished without disruption of the contractile function of the myofibril. It has been proposed that the calpains could remove the outer layer of filaments from myofibrils as a first step in myofibrillar protein turnover.

View Article and Find Full Text PDF

Although the calpain system has been studied extensively in mammalian animals, much less is known about the properties of mu-calpain, m-calpain, and calpastatin in lower vertebrates such as fish. These three proteins were isolated and partly characterized from rainbow trout, Oncorhynchus mykiss, muscle. Trout m-calpain contains an 80-kDa large subunit, but the approximately 26-kDa small subunit from trout m-calpain is smaller than the 28-kDa small subunit from mammalian calpains.

View Article and Find Full Text PDF

The finding that phospholipid micelles lowered the Ca2+ concentration required for autolysis of the calpains led to a hypothesis suggesting that the calpains are translocated to the plasma membrane where they interact with phospholipids to initiate their autolysis. However, the effect of plasma membranes themselves on the Ca2+ concentration required for calpain autolysis has never been reported. Also, if interaction with a membrane lowers the Ca2+ required for autolysis, the membrane-bound-calpain must autolyze itself, because it would be the only calpain having the reduced Ca2+ requirement.

View Article and Find Full Text PDF

Calpastatin is a multiheaded inhibitor capable of inhibiting more than one calpain molecule. Each inhibitory domain of calpastatin has three subdomains, A, B, and C; A binds to domain IV and C binds to domain VI of the calpains. Crystallographic evidence shows that binding of C to domain VI involves hydrophobic interactions at a site near the first EF-hand in domain VI.

View Article and Find Full Text PDF

Although the biochemical changes that occur during autolysis of mu- and m-calpain are well characterized, there have been few studies on properties of the autolyzed calpain molecules themselves. The present study shows that both autolyzed mu- and m-calpain lose 50-55% of their proteolytic activity within 5 min during incubation at pH 7.5 in 300 mM or higher salt and at a slower rate in 100 mM salt.

View Article and Find Full Text PDF

Proteolytic digestion by trypsin and chymotrypsin was used to probe conformation and domain structure of the mu- and m-calpain molecules in the presence and the absence of Ca(2+). Both calpains have a compact structure in the absence of Ca(2+); incubation with either protease for 120 min results in only three or four major fragments. A 24-kDa fragment was produced by removal of the Gly-rich area in domain V of the 28-kDa subunit.

View Article and Find Full Text PDF

The calpain system is involved in a number of human pathologies ranging from the muscular dystrophies to Alzheimer's disease. It is important, therefore, to be able to obtain and to characterize both mu-calpain and m-calpain from human tissue. Although human mu-calpain can be conveniently obtained from either erythrocytes or platelets, no readily available source of human m-calpain has been described.

View Article and Find Full Text PDF

A monoclonal antibody to the small subunit common to both mu- and m-calpains can be used in an immunoaffinity column to purify either mu- or m-calpain in a proteolytically active form. Extracts in 150 mM NaCl, pH 7.5, are loaded onto a column containing the anti-28-kDa antibody; the column is washed with 500 mM NaCl, pH 7.

View Article and Find Full Text PDF

It has been difficult to purify calpastatin without using a step involving heating to 90-100 degrees C. Preparations of calpastatin obtained after heating often contain several polypeptides that have been ascribed to proteolytic degradation. Because calpastatin is highly susceptible to proteolytic degradation and several different calpastatin isoforms can be produced by using different start sites of transcription/translation and/or alternative splicing from the single calpastatin gene, it is not clear whether the different polypeptides observed in purified calpastatin preparations are proteolytic fragments or calpastatin isoforms.

View Article and Find Full Text PDF

Integrin-induced cell adhesion results in transmission of signals that induce cytoskeletal reorganizations and resulting changes in cell behavior. The cytoskeletal reorganizations are regulated by transient activation and inactivation of Rho GTPases. Previously, we identified mu-calpain as an enzyme that is activated by signaling across beta1 and beta3 integrins.

View Article and Find Full Text PDF