The role of oligodendrocytes (OLs) extends beyond saltatory conduction to a modulatory role in neural information processing. Given this exalted role, we take first steps to frame the OL - axon interaction as a network of cells. We find that the OL - axon network has a natural encoding as a bipartite network, allowing us to determine key network properties, estimate the number of OLs or axons in various brain regions and determine the robustness of the network to random removal of cell nodes.
View Article and Find Full Text PDFNanoparticles (NPs) represent an attractive strategy to overcome difficulties associated with the delivery of therapeutics. Knowing the optimal properties of NPs to address these issues could allow for improved in vivo responses. This work investigated NPs prepared from 5 materials of 3 sizes and 3 concentrations applied to a cell barrier model.
View Article and Find Full Text PDFIntroduction: In professional rugby, sports-related concussion (SRC) remains the most frequent time loss injury. Therefore, accurately diagnosing SRC and monitoring player recovery, through a multi-modal assessment process, is critical to SRC management. In this protocol study, we aim to assess SRC over multiple time points post-injury to determine the value of multi-modal assessments to monitor player recovery.
View Article and Find Full Text PDFAssessing the ability of pharmaceutics to cross biological barriers and reach the site-of-action requires faithful representation of these barriers . Difficulties have arisen in replicating resistance . This paper investigated serum starvation as a method to increase Caco-2 barrier stability and resistance.
View Article and Find Full Text PDFThe cranial meninges have been shown to play a pivotal role in traumatic brain injury mechanopathology. However, while the mechanical response of the brain and its many subregions have been studied extensively, the meninges have conventionally been overlooked. This paper presents the first comparative mechanical analysis of human dura mater, falx cerebri and superior sagittal sinus tissues.
View Article and Find Full Text PDFThe dural venous sinuses play an integral role in draining venous blood from the cranial cavity. As a result of the sinuses anatomical location, they are of significant importance when evaluating the mechanopathology of traumatic brain injury (TBI). Despite the importance of the dural venous sinuses in normal neurophysiology, no mechanical analyses have been conducted on the tissues.
View Article and Find Full Text PDFThe meninges are membranous tissues that are pivotal in maintaining homeostasis of the central nervous system. Despite the importance of the cranial meninges in nervous system physiology and in head injury mechanics, our knowledge of the tissues' mechanical behavior and structural composition is limited. This systematic review analyzes the existing literature on the mechanical properties of the meningeal tissues.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
August 2020
Delivering therapeutics to disease sites is a challenge facing modern medicine. Nanoparticle delivery systems are of considerable interest to overcome this challenge, but these systems suffer from poor clinical translation. It is believed this is, in part, due to incomplete understanding of nanoparticle physico-chemical properties in vivo.
View Article and Find Full Text PDFDesmoid tumors are locally invasive sarcoma, affecting 5-6 individuals out of 1,000,000 per year. The desmoid tumors have high rates of recurrence after resection and can lead to significant deterioration of the quality of life of patients. There is a need for a better understanding of the desmoid tumors' patient experience from first symptoms through diagnosis, disease monitoring, and clinical treatment options.
View Article and Find Full Text PDFThe meninges are pivotal in protecting the brain against traumatic brain injury (TBI), an ongoing issue in most mainstream sports. Improved understanding of TBI biomechanics and pathophysiology is desirable to improve preventative measures, such as protective helmets, and advance our TBI diagnostic/prognostic capabilities. This study mechanically characterised the porcine meninges by performing uniaxial tensile testing on the dura mater (DM) tissue adjacent to the frontal, parietal, temporal, and occipital lobes of the cerebellum and superior sagittal sinus region of the DM.
View Article and Find Full Text PDFMotivated by in vitro time-lapse images of ovarian cancer spheroids inducing mesothelial cell clearance, the traditional agent-based model of cell migration, based on simple volume exclusion, was extended to include the possibility that a cell seeking to move into an occupied location may push the resident cell, and any cells neighbouring it, out of the way to occupy that location. In traditional discrete models of motile cells with volume exclusion such a move would be aborted. We introduce a new shoving mechanism which allows cells to choose the direction to shove cells that expends the least amount of shoving effort (to account for the likely resistance of cells to being pushed).
View Article and Find Full Text PDFThe myelin sheath that insulates some axons in the central nervous system allows for faster signal conduction. Previously, axons were thought to be either unmyelinated or fully myelinated. Recent experimental work has discovered a new pattern of myelination (intermittent myelination) along axons in the mouse brain, in which long unmyelinated axon segments are followed by myelinated segments of comparable length.
View Article and Find Full Text PDFPrevious studies have shown impaired memory for faces following restricted sleep. However, it is not known whether lack of sleep impairs performance on face identification tasks that do not rely on recognition memory, despite these tasks being more prevalent in security and forensic professions-for example, in photo-ID checks at national borders. Here we tested whether poor sleep affects accuracy on a standard test of face-matching ability that does not place demands on memory: the Glasgow Face-Matching Task (GFMT).
View Article and Find Full Text PDFThe cellular mechanisms that regulate the topographic arrangement of myelin internodes along axons remain largely uncharacterized. Recent clonal analysis of oligodendrocyte morphologies in the mouse optic nerve revealed that adjacent oligodendrocytes frequently formed adjacent internodes on one or more axons in common, whereas oligodendrocytes in the optic nerve were never observed to myelinate the same axon more than once. By modelling the process of axonal selection at the single cell level, we demonstrate that internode length and primary process length constrain the capacity of oligodendrocytes to myelinate the same axon more than once.
View Article and Find Full Text PDFOligodendrocytes are the myelin-producing cells of the central nervous system that are responsible for electrically insulating axons to speed the propagation of electrical impulses. A striking feature of oligodendrocyte development within white matter is that the cell bodies of many oligodendrocyte progenitor cells become organised into discrete linear arrays of three or more cells before they differentiate into myelin-producing oligodendrocytes. These linear arrays align parallel to the direction of the axons within white matter tracts and are believed to play an important role in the co-ordination of myelination.
View Article and Find Full Text PDF