Purpose: Here, we are testing the hypothesis that dynamic contrast enhanced MRI (DCE-MRI) is a useful approach for non-invasively evaluating age-related changes in aqueous humor outflow and its contribution to elevated intraocular pressure in the DBA/2J model of pigmentary glaucoma.
Methods: A rodent-specific 7 T MRI was used to assess eye anatomy (anterior chamber (AC) and vitreous body (VB) morphology, eye size, lens size) and aqueous humor dynamics (via intravenous administration of Gd-DTPA and Gd-BOPTA contrast agents) in C57BL/6 and DBA/2J mice at 3 and 9 months of age.
Results: Gd-MRI was used to demonstrate an anterior solute pathway into the mouse AC.
Protein levels of endothelial tight-junctions of the inner retinal microvasculature, together with those of Schlemm's canal, can be readily manipulated by RNA interference (RNAi), resulting in the paracellular clefts between such cells to be reversibly modulated. This facilitates access to the retina of systemically-deliverable low molecular weight, potentially therapeutic compounds, while also allowing potentially toxic material, for example, soluble Amyloid-β1-40, to be removed from the retina into the peripheral circulation. The technique has also been shown to be highly effective in alleviation of pathological cerebral oedema and we speculate that it may therefore have similar utility in the oedematous retina.
View Article and Find Full Text PDFIntraocular pressure (IOP) is maintained as a result of the balance between production of aqueous humour (AH) by the ciliary processes and hydrodynamic resistance to its outflow through the conventional outflow pathway comprising the trabecular meshwork (TM) and Schlemm's canal (SC). Elevated IOP, which can be caused by increased resistance to AH outflow, is a major risk factor for open-angle glaucoma. Matrix metalloproteinases (MMPs) contribute to conventional aqueous outflow homeostasis in their capacity to remodel extracellular matrices, which has a direct impact on aqueous outflow resistance and IOP.
View Article and Find Full Text PDFThe juxtacanalicular connective tissue of the trabecular meshwork together with inner wall endothelium of Schlemm's canal (SC) provide the bulk of resistance to aqueous outflow from the anterior chamber. Endothelial cells lining SC elaborate tight junctions (TJs), down-regulation of which may widen paracellular spaces between cells, allowing greater fluid outflow. We observed significant increase in paracellular permeability following siRNA-mediated suppression of TJ transcripts, claudin-11, zonula-occludens-1 (ZO-1) and tricellulin in human SC endothelial monolayers.
View Article and Find Full Text PDFThe blood-brain barrier (BBB) is essential for maintaining brain homeostasis and protecting neural tissue from damaging blood-borne agents. The barrier is characterized by endothelial tight junctions that limit passive paracellular diffusion of polar solutes and macromolecules from blood to brain. Decreased brain clearance of the neurotoxic amyloid-β (Aβ) peptide is a central event in the pathogenesis of Alzheimer's disease (AD).
View Article and Find Full Text PDF