Publications by authors named "Darragh B Freir"

Familial British dementia (FBD) is an inherited neurodegenerative disease believed to result from a mutation in the BRI2 gene. Post-translational processing of wild type BRI2 and FBD-BRI2 result in the production of a 23-residue long Bri peptide and a 34-amino acid long ABri peptide, respectively, and ABri is found deposited in the brains of individuals with FBD. Similarities in the neuropathology and clinical presentation shared by FBD and Alzheimer disease (AD) have led some to suggest that ABri and the AD-associated amyloid β-protein (Aβ) are molecular equivalents that trigger analogous pathogenic cascades.

View Article and Find Full Text PDF

Growing evidence suggests water-soluble, non-fibrillar forms of amyloid-β protein (Aβ) have important roles in Alzheimer's disease with toxicities mimicked by synthetic Aβ(1-42). However, no defined toxic structures acting via specific receptors have been identified and roles of proposed receptors, such as prion protein (PrP), remain controversial. Here we quantify binding to PrP of Aβ(1-42) after different durations of aggregation.

View Article and Find Full Text PDF

A role for PrP in the toxic effect of oligomeric forms of Aβ, implicated in Alzheimer's disease (AD), has been suggested but remains controversial. Here we show that PrP is required for the plasticity-impairing effects of ex vivo material from human AD brain and that standardized Aβ-derived diffusible ligand (ADDL) preparations disrupt hippocampal synaptic plasticity in a PrP-dependent manner. We screened a panel of anti-PrP antibodies for their ability to disrupt the ADDL-PrP interaction.

View Article and Find Full Text PDF

Nonfibrillar, water-soluble low-molecular weight assemblies of the amyloid β-protein (Aβ) are believed to play an important role in Alzheimer's disease (AD). Aqueous extracts of human brain contain Aβ assemblies that migrate on SDS-polyacrylamide gels and elute from size exclusion as dimers (∼8 kDa) and can block long-term potentiation and impair memory consolidation in the rat. Such species are detected specifically and sensitively in extracts of Alzheimer brain suggesting that SDS-stable dimers may be the basic building blocks of AD-associated synaptotoxic assemblies.

View Article and Find Full Text PDF

Extensive research has implicated the amyloid-β protein (Aβ) in the aetiology of Alzheimer's disease (AD). This protein has been shown to produce memory deficits when injected into rodent brain and in mouse models of AD Aβ production is associated with impaired learning and/or recall. Here we examined the effects of cell-derived SDS-stable 7PA2-derived soluble Aβ oligomers on consolidation of avoidance learning.

View Article and Find Full Text PDF

We have investigated changes in the morphological structure of Abeta1-40 during different incubation time periods at 37 degrees C ranging from 1 h to 7 days using Thioflavin T, Congo red binding and electron microscopy. We found distinctive changes in Abeta assembly demonstrating the formation of beta pleated sheets following 7-day incubation. Here we demonstrate that samples of the same Abeta1-40 peptide that are morphologically distinct can both attenuate hippocampal long-term potentiation (LTP) in the CA1 in vivo.

View Article and Find Full Text PDF

Control of neuronal spiking patterns resides, in part, in the type and degree of expression of voltage-gated K(+) channel subunits. Previous studies have revealed that soluble forms of the Alzheimer's disease associated amyloid beta protein (Abeta) can increase the 'A'-type current in neurones. In this study, we define the molecular basis for this increase and show that endogenous production of Abeta is important in the modulation of Kv4.

View Article and Find Full Text PDF

Long-term potentiation (LTP), in the hippocampal CA1 region is dependent on postsynaptic calcium influx. It is generally accepted that calcium influx occurs via activation of the NMDA receptor channel complex. However, studies in vitro using a high-frequency stimulus protocol (> or =200 Hz) demonstrated previously an NMDA receptor-independent form of LTP that is dependent upon activation of L-type voltage-dependent calcium channels (VDCCs).

View Article and Find Full Text PDF