Publications by authors named "Darpan Shidid"

Bone tumors, characterized by diverse locations and shapes, often necessitate surgical excision followed by custom implant placement to facilitate targeted bone reconstruction. Leveraging additive manufacturing, patient-specific implants can be precisely tailored with complex geometries and desired stiffness, enhancing their suitability for bone ingrowth. In this work, a finite element model is employed to assess patient-specific lattice implants in femur bones.

View Article and Find Full Text PDF

Stress shielding is a common complication following endoprosthetic reconstruction surgery. The resulting periprosthetic osteopenia often manifests as catastrophic fractures and can significantly limit future treatment options. It has been long known that bone plates with lower elastic moduli are key to reducing the risk of stress shielding in orthopedics.

View Article and Find Full Text PDF

Purpose: Bone tumours must be surgically excised in one piece with a margin of healthy tissue. The unique nature of each bone tumour case is well suited to the use of patient-specific implants, with additive manufacturing allowing production of highly complex geometries. This work represents the first assessment of the combination of surgical robotics and patient-specific additively manufactured implants.

View Article and Find Full Text PDF

Background And Objective: Therapeutic exercises could potentially enhance the healing of distal radius fractures (DRFs) treated with volar locking plate (VLP). However, the healing outcomes are highly dependant on the patient-specific fracture geometries (e.g.

View Article and Find Full Text PDF

The application of volar locking plate (VLP) is promising in the treatment of dorsally comminuted and displaced fracture. However, the optimal balance between the mechanical stability of VLP and the mechanobiology at the fracture site is still unclear. The purpose of this study is to develop numerical models in conjunction with experimental studies to identify the favourable mechanical microenvironment for indirect healing, by optimizing VLP configuration and post-operative loadings for different fracture geometries.

View Article and Find Full Text PDF

Additive manufacturing (AM) enables the fabrication of lattice structures with optimal mechanical, fluid, and thermal properties. However, during the AM fabrication process, defects are produced in the strut and node elements, which comprise the lattice structure. This leads to discrepancies between the AM fabricated lattice and its idealized computer-aided design (CAD) model, negatively affecting the ability to predict the mechanical behavior of the fabricated lattice via numerical models.

View Article and Find Full Text PDF