Rotational behaviour has been observed when dolphins track or detect targets, however, its role in echolocation is unknown. We used computed tomography data of one live and one recently deceased bottlenose dolphin, together with measurements of the acoustic properties of head tissues, to perform acoustic property reconstruction. The anatomical configuration and acoustic properties of the main forehead structures between the live and deceased dolphins were compared.
View Article and Find Full Text PDFIn all mammals, the superior olivary complex (SOC) comprises a group of auditory brainstem nuclei that are important for sound localization. Its principal nuclei, the lateral superior olive (LSO) and the medial superior olive (MSO) process interaural time and intensity differences, which are the main cues for sound localization in the horizontal plane. Toothed whales (odontocetes) rely heavily on hearing and echolocation for foraging, orientation, and communication and localize sound with great acuity.
View Article and Find Full Text PDFCetacean behavior and life history imply a role for somatosensory detection of critical signals unique to their marine environment. As the sensory anatomy of cetacean glabrous skin has not been fully explored, skin biopsy samples of the flank skin of humpback whales were prepared for general histological and immunohistochemical (IHC) analyses of innervation in this study. Histology revealed an exceptionally thick epidermis interdigitated by numerous, closely spaced long, thin diameter penicillate dermal papillae (PDP).
View Article and Find Full Text PDFDolphins use their biosonar to discriminate objects with different features through the returning echoes. Cross-modal matching experiments were conducted with a resident bottlenose dolphin (Tursiops aduncus). Four types of objects composed of different materials (water-filled PVC pipes, air-filled PVC pipes, foam ball arrays, and PVC pipes wrapped in closed-cell foam) were used in the experiments, respectively.
View Article and Find Full Text PDFNoise-induced temporary hearing threshold shift (TTS) was studied in a harbor porpoise exposed to impulsive sounds of scaled-down airguns while both stationary and free-swimming for up to 90 min. In a previous study, ∼4 dB TTS was elicited in this porpoise, but despite 8 dB higher single-shot and cumulative exposure levels (up to 199 dB re 1 μPas) in the present study, the porpoise showed no significant TTS at hearing frequencies 2, 4, or 8 kHz. There were no changes in the study animal's audiogram between the studies or significant differences in the fatiguing sound that could explain the difference, but audible and visual cues in the present study may have allowed the porpoise to predict when the fatiguing sounds would be produced.
View Article and Find Full Text PDFEcholocation signals emitted by odontocetes can be roughly classified into three broad categories: broadband echolocation signals, narrowband high-frequency echolocation signals, and frequency modulated clicks. Previous measurements of broadband echolocation signal propagation in the bottlenose dolphin (Tursiops truncatus) did not find any evidence of focusing as the signals travel from the near-field to far-field. Finite element analysis (FEA) of high-resolution computed tomography scan data was used to examine signal propagation of broadband echolocation signals of dolphins and narrowband echolocation signals of porpoises.
View Article and Find Full Text PDFAt present, there are no direct measures of hearing for any baleen whale (Mysticeti). The most viable alternative to approaches to simulate the audiogram is through modeling outer, middle, and inner ear functions based on the anatomy and material properties of each component. This paper describes a finite element model of the middle ear for the humpback whale () to calculate the middle ear transfer function (METF) to determine acoustic energy transmission to the cochlea.
View Article and Find Full Text PDFBottlenose dolphins project broadband echolocation signals for detecting and locating prey and predators, and for spatial orientation. There are many unknowns concerning the specifics of biosonar signal production and propagation in the head of dolphins and this manuscript represents an effort to address this topic. A two-dimensional finite element model was constructed using high resolution CT scan data.
View Article and Find Full Text PDFThe plainfin midshipman fish, Porichthys notatus, is a nocturnal marine teleost that uses social acoustic signals for communication during the breeding season. Nesting type I males produce multiharmonic advertisement calls by contracting their swim bladder sonic muscles to attract females for courtship and spawning while subsequently attracting cuckholding type II males. Here, we report intra- and intersexual dimorphisms of the swim bladder in a vocal teleost fish and detail the swim bladder dimorphisms in the three sexual phenotypes (females, type I and II males) of plainfin midshipman fish.
View Article and Find Full Text PDFHarbor porpoises (Phocoena phocoena) use narrow band echolocation signals for detecting and locating prey and for spatial orientation. In this study, acoustic impedance values of tissues in the porpoise's head were calculated from computer tomography (CT) scan and the corresponding Hounsfield Units. A two-dimensional finite element model of the acoustic impedance was constructed based on CT scan data to simulate the acoustic propagation through the animal's head.
View Article and Find Full Text PDFThere is increasing concern about the effects of underwater sound on marine life. However, the science of sound is challenging. The Discovery of Sound in the Sea (DOSITS) Web site ( http://www.
View Article and Find Full Text PDFJ Comp Physiol A Neuroethol Sens Neural Behav Physiol
August 2015
There is little biological data available for diving birds because many live in hard-to-study, remote habitats. Only one species of diving bird, the black-footed penguin (Spheniscus demersus), has been studied in respect to auditory capabilities (Wever et al., Proc Natl Acad Sci USA 63:676-680, 1969).
View Article and Find Full Text PDFJ Comp Physiol A Neuroethol Sens Neural Behav Physiol
August 2015
While odontocetes do not have an external pinna that guides sound to the middle ear, they are considered to receive sound through specialized regions of the head and lower jaw. Yet odontocetes differ in the shape of the lower jaw suggesting that hearing pathways may vary between species, potentially influencing hearing directionality and noise impacts. This work measured the audiogram and received sensitivity of a Risso's dolphin (Grampus griseus) in an effort to comparatively examine how this species receives sound.
View Article and Find Full Text PDFThe neurocranium of the toadfish (Opsanus tau) exhibits a distinct translucent region in the otic capsule (OC) that may have functional significance for the auditory pathway. This study used ultrahigh resolution computerized tomography (100 µm voxels) to compare the relative density of three sites along the OC (dorsolateral, midlateral, and ventromedial) and two reference sites (dorsal: supraoccipital crest; ventral: parasphenoid bone) in the neurocranium. Higher attenuation occurs where structural density is greater; thus, we compared the X-ray attenuations measured, which provided a measure of relative density.
View Article and Find Full Text PDFSquid are a significant component of the marine biomass and are a long-established model organism in experimental neurophysiology. The squid statocyst senses linear and angular acceleration and is the best candidate for mediating squid auditory responses, but its physiology and morphology are rarely studied. The statocyst contains mechano-sensitive hair cells that resemble hair cells in the vestibular and auditory systems of other animals.
View Article and Find Full Text PDFAbstract Cetaceans are obligate aquatic mammals derived from terrestrial artiodactyls. The defining characteristic of cetaceans is a thick and dense lip (pachyosteosclerotic involucrum) of an ear bone (the tympanic). This unique feature is absent in modern terrestrial artiodactyls and is suggested to be important in underwater hearing.
View Article and Find Full Text PDFIn order to model the hearing capabilities of marine mammals (cetaceans), it is necessary to understand the mechanical properties, such as elastic modulus, of the middle ear bones in these species. Biologically realistic models can be used to investigate the biomechanics of hearing in cetaceans, much of which is currently unknown. In the present study, the elastic moduli of the auditory ossicles (malleus, incus, and stapes) of eight species of cetacean, two baleen whales (mysticete) and six toothed whales (odontocete), were measured using nanoindentation.
View Article and Find Full Text PDFHow an animal receives sound may influence its use of sound. While 'jaw hearing' is well supported for odontocetes, work examining how sound is received across the head has been limited to a few representative species. The substantial variation in jaw and head morphology among odontocetes suggests variation in sound reception.
View Article and Find Full Text PDFA loggerhead sea turtle (Caretta caretta) was suspected of ingesting rubber suction cups during rehabilitation following a cold-stun event. Survey radiographs were inconclusive. Computed tomography (CT) was performed to determine whether the objects had been ingested after traditional radiographs failed to resolve the material.
View Article and Find Full Text PDFThe position of testudines in vertebrate phylogeny is being re-evaluated. At present, testudine morphological and molecular data conflict when reconstructing phylogenetic relationships. Complicating matters, the ecological niche of stem testudines is ambiguous.
View Article and Find Full Text PDFThe lack of baleen whale (Cetacea Mysticeti) audiograms impedes the assessment of the impacts of anthropogenic noise on these animals. Estimates of audiograms, which are difficult to obtain behaviorally or electrophysiologically for baleen whales, can be made by simulating the audiogram as a series of components representing the outer, middle, and inner ear (Rosowski, 1991; Ruggero and Temchin, 2002). The middle-ear portion of the system can be represented by the middle-ear transfer function (METF), a measure of the transmission of acoustic energy from the external ear to the cochlea.
View Article and Find Full Text PDFThe Laboratory of Translational Auditory Research (LTAR/NYUSM) is part of the Department of Otolaryngology at the New York University School of Medicine and has close ties to the New York University Cochlear Implant Center. LTAR investigators have expertise in multiple related disciplines including speech and hearing science, audiology, engineering, and physiology. The lines of research in the laboratory deal mostly with speech perception by hearing impaired listeners, and particularly those who use cochlear implants (CIs) or hearing aids (HAs).
View Article and Find Full Text PDFCetaceans possess highly derived auditory systems adapted for underwater hearing. Odontoceti (toothed whales) are thought to receive sound through specialized fat bodies that contact the tympanoperiotic complex, the bones housing the middle and inner ears. However, sound reception pathways remain unknown in Mysticeti (baleen whales), which have very different cranial anatomies compared to odontocetes.
View Article and Find Full Text PDFTurtles, like other amphibious animals, face a trade-off between terrestrial and aquatic hearing. We used laser vibrometry and auditory brainstem responses to measure their sensitivity to vibration stimuli and to airborne versus underwater sound. Turtles are most sensitive to sound underwater, and their sensitivity depends on the large middle ear, which has a compliant tympanic disc attached to the columella.
View Article and Find Full Text PDFPotential physical effects of sonar transmissions on marine mammals were investigated by measuring pressure fields induced in a 119-kg, 211-cm-long, young adult male common dolphin (Delphinus delphis) cadaver. The specimen was instrumented with tourmaline acoustic pressure gauges used as receiving sensors. Gauge implantation near critical tissues was guided by intraoperative, high-resolution, computerized tomography (CT) scanning.
View Article and Find Full Text PDF