Publications by authors named "Darlan Conterno Minussi"

Article Synopsis
  • Ductal carcinoma in situ (DCIS) serves as a significant precursor to invasive breast cancer, but its progression to more severe disease is not well understood due to genomic profiling difficulties.
  • The Arc-well method was developed to enable high-throughput single-cell DNA sequencing from challenging formalin-fixed paraffin-embedded samples, validating its efficacy on a variety of tumor types.
  • Analysis revealed that primary DCIS often exhibits whole-genome doubling and diversification, indicating shared genomic origins with recurring cancers, and highlights specific chromosome aberrations linked to the recurrence.
View Article and Find Full Text PDF

Exercise changes the tumor microenvironment by remodeling blood vessels and increasing infiltration by cytotoxic immune cells. The mechanisms driving these changes remain unclear. Herein, we demonstrate that exercise normalizes tumor vasculature and upregulates endothelial expression of VCAM1 in YUMMER 1.

View Article and Find Full Text PDF

Intra-tumor heterogeneity (ITH) of human tumors is important for tumor progression, treatment response, and drug resistance. However, the spatial distribution of ITH remains incompletely understood. Here, we present spatial analysis of ITH in lung adenocarcinomas from 147 patients using multi-region mass spectrometry of >5,000 regions, single-cell copy number sequencing of ~2,000 single cells, and cyclic immunofluorescence of >10 million cells.

View Article and Find Full Text PDF

We present a Minimal Event Distance Aneuploidy Lineage Tree (MEDALT) algorithm that infers the evolution history of a cell population based on single-cell copy number (SCCN) profiles, and a statistical routine named lineage speciation analysis (LSA), whichty facilitates discovery of fitness-associated alterations and genes from SCCN lineage trees. MEDALT appears more accurate than phylogenetics approaches in reconstructing copy number lineage. From data from 20 triple-negative breast cancer patients, our approaches effectively prioritize genes that are essential for breast cancer cell fitness and predict patient survival, including those implicating convergent evolution.

View Article and Find Full Text PDF

The evolution of cancer is inferred mainly from samples taken at discrete points that represent glimpses of the complete process. In this study, we present esiCancer as a cancer-evolution simulator. It uses a branching process, randomly applying events to a diploid oncogenome, altering probabilities of proliferation and death of the affected cells.

View Article and Find Full Text PDF

The functional impact of the vast majority of cancer somatic mutations remains unknown, representing a critical knowledge gap for implementing precision oncology. Here, we report the development of a moderate-throughput functional genomic platform consisting of efficient mutant generation, sensitive viability assays using two growth factor-dependent cell models, and functional proteomic profiling of signaling effects for select aberrations. We apply the platform to annotate >1,000 genomic aberrations, including gene amplifications, point mutations, indels, and gene fusions, potentially doubling the number of driver mutations characterized in clinically actionable genes.

View Article and Find Full Text PDF

NTPDase2, a member of the CD39/NTPDase family, is an ecto-nucleotidase anchored to the plasma membrane by two transmembrane domains, with a catalytic site facing the extracellular space and preferentially hydrolyzing nucleoside triphosphates. While NTPDase2 is expressed in many cell types, its unique functionality, mobility and dynamics at the cell membrane remain unexplored. We therefore constructed a recombinant NTPDase2 linked to the yellow fluorescent protein (EYFP) to investigate its dynamics by confocal microscopy.

View Article and Find Full Text PDF

Resistance to anticancer drugs is a major impediment to treating patients with cancer. The molecular mechanisms deciding whether a tumor cell commits to cell death or survives under chemotherapy are complex. Mounting evidence indicates a critical role of cell death and survival pathways in determining the response of human cancers to chemotherapy.

View Article and Find Full Text PDF