Publications by authors named "Darla Goeres"

The CDC Biofilm Reactor method is the standard biofilm growth protocol for the validation of US Environmental Protection Agency biofilm label claims. However, no studies have determined the effect of coupon orientation within the reactor on biofilm growth. If positional effects have a statistically significant impact on biofilm density, they should be accounted for in the experimental design.

View Article and Find Full Text PDF

There has been considerable discussion regarding the environmental life cycle of and its virulence potential in natural and man-made water systems. On the other hand, the bacterium's morphogenetic mechanisms within host cells (amoeba and macrophages) have been well documented and are linked to its ability to transition from a non-virulent, replicative state to an infectious, transmissive state. Although the morphogenetic mechanisms associated with the formation and detachment of the biofilm have also been described, the capacity of the bacteria to multiply extracellularly is not generally accepted.

View Article and Find Full Text PDF

Craft brewing is continually gaining popularity in the United States. Craft brewers are committed to producing a wide variety of products and have a vested interest in product quality. Therefore, these brewers have the expectation that the beer poured at the tap will match the quality product that left the brewery.

View Article and Find Full Text PDF

Bacterial biofilms account for up to 80% of all infections and complicate successful therapies due to their intrinsic tolerance to antibiotics. Biofilms also cause serious problems in the industrial sectors, for instance due to the deterioration of metals or microbial contamination of products. Efforts are put in finding novel strategies in both avoiding and fighting biofilms.

View Article and Find Full Text PDF

Biofilms are self-organized communities of microorganisms that are encased in an extracellular polymeric matrix and often found attached to surfaces. Biofilms are widely present on Earth, often found in diverse and sometimes extreme environments. These microbial communities have been described as recalcitrant or protective when facing adversity and environmental exposures.

View Article and Find Full Text PDF

Biofilms are often polymicrobial in nature, which can impact their behavior and overall structure, often resulting in an increase in biomass and enhanced antimicrobial resistance. Using plate counts and locked nucleic acid/2'-O-methyl-RNA fluorescence in situ hybridization (LNA/2'OMe-FISH), we studied the interactions of four species commonly associated with catheter-associated urinary tract infections (CAUTI): Enterococcus faecalis, Escherichia coli, Candida albicans, and Proteus mirabilis. Eleven combinations of biofilms were grown on silicone coupons placed in 24-well plates for 24 h, 37°C, in artificial urine medium (AUM).

View Article and Find Full Text PDF

Aim: To assess removal versus kill efficacies of antimicrobial treatments against thick biofilms with statistical confidence.

Methods And Results: A photo-activated chlorine dioxide treatment (Photo ClO ) was tested in two independent experiments against thick (>100 μm) Pseudomonas aeruginosa biofilms. Kill efficacy was assessed by viable plate counts.

View Article and Find Full Text PDF

Bacterial biofilms are often defined as communities of surface-attached bacteria and are typically depicted with a classic mushroom-shaped structure characteristic of Pseudomonas aeruginosa. However, it has become evident that this is not how all biofilms develop, especially in vivo, in clinical and industrial settings, and in the environment, where biofilms often are observed as non-surface-attached aggregates. In this Review, we describe the origin of the current five-step biofilm development model and why it fails to capture many aspects of bacterial biofilm physiology.

View Article and Find Full Text PDF

Biofilm methods consist of four distinct steps: growing the biofilm in a relevant model, treating the mature biofilm, harvesting the biofilm from the surface and disaggregating the clumps, and analyzing the sample. Of the four steps, harvesting and disaggregation are the least studied but nonetheless critical when considering the potential for test bias. This article demonstrates commonly used harvesting and disaggregation techniques for biofilm grown on three different surfaces.

View Article and Find Full Text PDF

The development, validation, and use of new quantitative methodologies for testing the effectiveness of antimicrobial products are necessary to meet the regulatory challenges associated with an ever-changing marketplace, novel product claims, new infection control practices, and the emergence of new clinical pathogens. A series of four interlaboratory studies were conducted in a standardized manner on an interim quantitative method for testing liquid treatments against bacteria to assess its statistical performance. The Quantitative Method, a derivative of ASTM E2197, is designed to enumerate the number of viable microbes remaining on a test carrier following exposure to a liquid antimicrobial treatment; a log reduction (LR) in viable bacteria is calculated based on the difference between the mean log density values of the untreated control and treated carriers.

View Article and Find Full Text PDF

Coordination of efforts to assess the challenges and pain points felt by industries from around the globe working to reduce COVID-19 transmission in the indoor environment as well as innovative solutions applied to meet these challenges is mandatory. Indoor infectious viral disease transmission (such as coronavirus, norovirus, influenza) is a complex problem that needs better integration of our current knowledge and intervention strategies. Critical to providing a reduction in transmission is to map the four core technical areas of environmental microbiology, transmission science, building science, and social science.

View Article and Find Full Text PDF

Shearing stresses are known to be a critical factor impacting the growth and physiology of biofilms, but the underlying fluid dynamics within biofilm reactors are rarely well characterized and not always considered when a researcher decides which biofilm reactor to use. The CDC biofilm reactor is referenced in validated Standard Test Methods and US EPA guidance documents. The driving fluid dynamics within the CDC biofilm reactor were investigated using computational fluid dynamics.

View Article and Find Full Text PDF
Article Synopsis
  • Microtiter plate methods are widely used to study biofilm formation, but issues with reproducibility have raised concerns about their reliability.
  • An interlaboratory study involving five labs aimed to evaluate the effectiveness of three methods—crystal violet, resazurin, and plate counts—specifically for quantifying Staphylococcus aureus biofilms.
  • Results indicated that plate counts not only showed the best responsiveness to varying treatment levels but also had the highest reliability, making it the preferred method for antimicrobial tests in biofilm research.
View Article and Find Full Text PDF

Biofilms are complex and dynamic structures that include many more components than just viable cells. Therefore, the apparently simple goal of growing reproducible biofilms is often elusive. One of the challenges in defining reproducibility for biofilm research is that different research fields use a spectrum of parameters to define reproducibility for their particular application.

View Article and Find Full Text PDF

Prodrugs are pharmacologically attenuated derivatives of drugs that undergo bioconversion into the active compound once reaching the targeted site, thereby maximizing their efficiency. This strategy has been implemented in pharmaceuticals to overcome obstacles related to absorption, distribution, and metabolism, as well as with intracellular dyes to ensure concentration within cells. In this study, we provide the first examples of a prodrug strategy that can be applied to simple phenolic antimicrobials to increase their potency against mature biofilms.

View Article and Find Full Text PDF

A standard method for growing Pseudomonas aeruginosa biofilm in the Drip Flow Biofilm Reactor was assessed in a 10-laboratory study. The mean log density was 9.29 Log(CFU/cm).

View Article and Find Full Text PDF

The lack of reproducibility of published studies is one of the major issues facing the scientific community, and the field of biofilm microbiology has been no exception. One effective strategy against this multifaceted problem is the use of minimum information guidelines. This strategy provides a guide for authors and reviewers on the necessary information that a manuscript should include for the experiments in a study to be clearly interpreted and independently reproduced.

View Article and Find Full Text PDF

Biofilm-forming bacteria present formidable challenges across diverse settings, and there is a need for new antimicrobial agents that are both environmentally acceptable and relatively potent against microorganisms in the biofilm state. The antimicrobial activity of three naturally occurring, low molecular weight, phenols, and their derivatives were evaluated against planktonic and biofilm and . The structure activity relationships of eugenol, thymol, carvacrol, and their corresponding 2- and 4-allyl, 2-methallyl, and 2- and 4--propyl derivatives were evaluated.

View Article and Find Full Text PDF

Methods validated by a standard setting organization enable public, industry and regulatory stakeholders to make decisions on the acceptability of products, devices and processes. This is because standard methods are demonstrably reproducible when performed in different laboratories by different researchers, responsive to different products, and rugged when small (usually inadvertent) variations from the standard procedure occur. The Single Tube Method (ASTM E2871) is a standard method that measures the efficacy of antimicrobials against biofilm bacteria that has been shown to be reproducible, responsive and rugged.

View Article and Find Full Text PDF

We review reproducibility results for methods that test antimicrobial efficacy against biofilms, spores and bacteria dried onto a surface. Our review, that included test results for Pseudomonas aeruginosa, Salmonella choleraesuis and Bacillus subtilis, suggests that the level of reproducibility depends on the efficacy of the antimicrobial agent being tested for each microbe and microbial environment. To determine the reproducibility of a method, several laboratories must independently test the same antimicrobial agent using the method.

View Article and Find Full Text PDF

Biofilms can cause severe problems to human health due to the high tolerance to antimicrobials; consequently, biofilm science and technology constitutes an important research field. Growing a relevant biofilm in the laboratory provides insights into the basic understanding of the biofilm life cycle including responses to antibiotic therapies. Therefore, the selection of an appropriate biofilm reactor is a critical decision, necessary to obtain reproducible and reliable in vitro results.

View Article and Find Full Text PDF

Biofilm formation leads to the failure of antimicrobial therapy. Thus, biofilm prevention is a desirable goal of antimicrobial research. In this study, the efficacy of antibiotics (doxycycline, oxacillin and rifampicin) in preventing Staphylococcus aureus biofilms was investigated using Microtiter Well Plates (MWP) and Drip Flow Reactors (DFR), two models characterized by the absence and the presence of a continuous flow of nutrients, respectively.

View Article and Find Full Text PDF

The concept of biofilms in human health and disease is now widely accepted as cause of chronic infection. Typically, biofilms show remarkable tolerance to many forms of treatments and the host immune response. This has led to vast increase in research to identify new (and sometimes old) anti-biofilm strategies that demonstrate effectiveness against these tolerant phenotypes.

View Article and Find Full Text PDF