Histidine residues 44 and 48 in yeast alcohol dehydrogenase (ADH) bind to the coenzymes NAD(H) and contribute to catalysis. The individual H44R and H48Q substitutions alter the kinetics and pH dependencies, and now the roles of other ionizable groups in the enzyme were studied in the doubly substituted H44R/H48Q ADH. The substitutions make the enzyme more resistant to inactivation by diethyl pyrocarbonate, modestly improve affinity for coenzymes, and substantially decrease catalytic efficiencies for ethanol oxidation and acetaldehyde reduction.
View Article and Find Full Text PDFHis-48 in yeast alcohol dehydrogenase I (His 51 in horse liver alcohol dehydrogenase) is a highly conserved residue in the active sites of many alcohol dehydrogenases. The imidazole group of His-48 may participate in base catalysis of proton transfer as it is linked by hydrogen bonds through the 2'-hydroxyl group of the nicotinamide ribose and the hydroxyl group of Thr-45 to the hydroxyl group of the alcohol bound to the catalytic zinc. In this study, His-48 was substituted with a glutamic acid residue to determine if a carboxylate could replace imidazole or to a serine residue to determine if the exposure of the 2'-hydroxyl group of the ribose to solvent would allow proton transfer to water without base catalysis.
View Article and Find Full Text PDF