Publications by authors named "Darko Dolenc"

Messenger RNA (mRNA) is becoming an increasingly important therapeutic modality due to its potential for fast development and platform production. New emerging RNA modalities, such as circular RNA, drive the need for the development of non-affinity purification approaches. Recently, the highly efficient chromatographic purification of mRNA was demonstrated with multimodal monolithic chromatography media (CIM PrimaS), where efficient mRNA elution was achieved with an ascending pH gradient approach at pH 10.

View Article and Find Full Text PDF

Flotation collector -isopropyl -ethylthionocarbamate (IPETC) is widely used for separation of sulfide ores. Its removal from water by several oxidation processes was studied. Photocatalytic oxidation with air in the presence of iron salts, utilizing solar irradiation or artificial UV-A light is very efficient.

View Article and Find Full Text PDF

Emerging contaminants represent a wide group of the most different compounds. They appear in the environment at trace levels due to human activity. Most of these compounds are not yet regulated.

View Article and Find Full Text PDF

Glycidyl esters, frequently employed as reactive groups on polymeric supports, were functionalized with alcohols as stoichiometric reagents, yielding β-alkoxyalcohols. Among the solvents studied, best results were obtained in ethers in the presence of a strong proton acid as a catalyst. Alcohols include simple alkanols, diols, protected polyols, 3-butyn-1-ol 3-hydroxypropanenitrile and cholesterol.

View Article and Find Full Text PDF

Chlorantraniliprole (CAP) is a newly developed, widely applied insecticide. In the aquatic environment, several transformation products are formed under natural conditions, one by dehydration and others by photoinduced degradation. Data on aquatic ecotoxicity of CAP can mainly be found in registration and regulatory evaluation reports.

View Article and Find Full Text PDF

In our study, the transformation of two most widely used UV filters, benzophenone-3 (BP3) and benzophenone-4 (BP4), in chlorinated water with disinfection reagents sodium hypochlorite (NaClO) and trichloroisocyanuric acid (TCCA) was studied. Based on the HPLC/MS and UV-Vis analysis the formation of two different chlorinated products (5-chloro-2-hydroxy-4-methoxybenzophenone and 3,5-dichloro-2-hydroxy-4-methoxybenzophenone) was established. Identity of chlorinated products was confirmed by means of comparison of retention times with independently synthesized standards.

View Article and Find Full Text PDF

This study aimed at assessing the photodegradation of the insecticide chlorantraniliprole (CAP) in deionized water and in tap water amended with humic acids and nitrate. Photolysis was carried out under simulated solar or UV-A light. CAP (39 μM) photodegradation was slightly faster in tap water than in deionized water with half lives of 4.

View Article and Find Full Text PDF

This work describes for the first time the photolytic and photocatalytic degradation of 6-chloronicotinic acid (6CNA) in double deionised water, which is a degradation product of neonicotinoid insecticides imidacloprid and acetamiprid, and it is known to appear in different environmental matrices. Photolytic experiments were performed with three UVA (ultraviolet A) polychromatic fluorescent lamps with broad maximum at 355 nm, while photocatalytic experiments were performed using immobilised titanium dioxide (TiO₂) on six glass slides in the spinning basket inside a photocatalytic quartz cell under similar irradiation conditions. Photolytic degradation revealed no change in concentration of 6CNA within 120 min of irradiation, while the photocatalytic degradation within 120 min, obeyed first-order kinetics.

View Article and Find Full Text PDF

(PyH)5[Mo(V)OCl4(H2O)]3Cl2 and (PyH)n[Mo(V)OBr4]n reacted with glycolic acid (H2glyc) or its half-neutralized ion (Hglyc(-)) to afford a series of novel glycolato complexes based on the {Mo(V)2O4}2+ structural core: (PyH)3[Mo2O4Cl4(Hglyc)]. (1)/ 2CH 3CN (1), (PyH) 3[Mo 2O 4Br 4(Hglyc)].Pr(i)OH(2), (PyH)2[Mo2O4(glyc) 2Py 2] (3), (PyH) 4[Mo 4O 8Cl 4(glyc) 2].

View Article and Find Full Text PDF

Autoxidation of hydrazones is a generally occurring reaction, leading mostly to the formation of alpha-azohydroperoxides. All structural kinds of hydrazones, having at least one hydrogen atom on nitrogen, are prone to autoxidation; however, there are marked differences in the rate of the reaction. Hydrazones of aliphatic ketones are 1-2 orders of magnitude more reactive than analogous derivatives of aromatic ketones.

View Article and Find Full Text PDF

Abstraction of the iodine atom from aryl iodides by alkyl radicals takes place in some cases very efficiently despite the unfavorable difference in bond dissociation energies of C-I bonds in alkyl and aryl iodides. The abstraction is most efficient in iodobenzenes, ortho-substituted with bulky groups. The ease of abstraction can be explained by the release of steric strain during the elimination of the iodine atom.

View Article and Find Full Text PDF

Secondary beta-bromo alcohols can be transformed directly to ketones in very good yields by a free radical process. Tertiary beta-bromo alcohols do not react while the primary ones are transformed to aldehydes in lower yields. The reaction involves an abstraction of a hydrogen atom alpha to an OH group, followed by elimination of the bromine atom and subsequent tautomerization of an enol to a ketone.

View Article and Find Full Text PDF