Publications by authors named "Dariusz Moszynski"

To demonstrate the feasibility of obtaining low-molecular-weight organic films (below 200 Da) using non-solvent PVD processes, glucose layers were produced via pulsed laser deposition (PLD) and pulsed electron beam deposition (PED) methods. Glucose was chosen due to its fundamental role in various biological processes, and because this low-molecular-weight compound is a solid at room temperature, which is required for both techniques. The physical and chemical structures of the deposited glucose layers were characterized by optical, scanning electron, and atomic force microscopy, as well as by X-ray diffraction, X-ray photoelectron, and infrared spectroscopy.

View Article and Find Full Text PDF

The ammonia synthesis process produces millions of tons of ammonia annually needed for the production of fertilisers, making it the second most produced chemical worldwide. Although this process has been optimised extensively, it still consumes large amounts of energy (around 2% of global energy consumption), making it essential to improve its efficiency. To accelerate this improvement, research on catalysts is necessary.

View Article and Find Full Text PDF

There is great interest in using eco-friendly functional colorants with antibacterial activity to produce colorful textile and plastic products. In this study, we designed, produced, and analyzed a novel multifunctional hybrid color composite colorant with antimicrobial properties, prepared from plant-based products. The new functional color composite was prepared by stabilizing lawsone dye onto amino-silanized cellulose from bamboo fibers.

View Article and Find Full Text PDF

This article presents a two-step method of iron red synthesis based on waste long-term deposited iron(II) sulfate. The first step is the purification of waste iron sulfate, and then the pigment is synthesized by precipitation using a microwave reactor. The newly developed method of purification allows for quick and thorough purification of iron salt.

View Article and Find Full Text PDF

The synthesis of ammonia in the Haber-Bosch process produces millions of tons of ammonia annually needed for producing fertilisers required to feed the growing population. Although this process has been optimised extensively, it still accounts for about 2% of global energy consumption. It is, therefore, desirable to develop an efficient ammonia synthesis catalyst.

View Article and Find Full Text PDF

Synthesis of ammonia from nitrogen and hydrogen is one of the largest manmade chemical processes, with annual production reaching 170 million tons. The Haber-Bosch process is the main industrial method for producing ammonia, which proceeds at high temperatures (400-600 °C) and pressures (20-40 MPa) using an iron-based catalyst. It is thus highly desirable to develop new catalysts with sufficient activity and stability under mild conditions.

View Article and Find Full Text PDF

The influence of a magnesium oxide admixture on the activation process and catalytic activity of the iron catalyst with a wustite structure was investigated during the ammonia synthesis reaction. The incorporation of magnesium oxide into wustite grains is considered to be a structure-forming and activating promoter. It stabilizes the α-Fe structure and increases the activity of the catalysts in the ammonia synthesis reaction.

View Article and Find Full Text PDF

An artificially prepared nanocrystalline iron sample with bimodal crystallite size distribution was nitrided and denitrided in the NH/H atmosphere at 350 °C and 400 °C. The sample was a 1:1 mass ratio mixture of two iron samples with mean crystallite sizes of 48 nm and 21 nm. Phase transformations between α-Fe, γ'-FeN and ε-FeN were observed by the in situ X-ray powder diffraction method.

View Article and Find Full Text PDF

The elimination of antibiotics occurring in the natural environment has become a great challenge in recent years. Among other techniques, the photocatalytic degradation of this type of pollutant seems to be a promising approach. Thus, the search for new photoactive materials is currently of great importance.

View Article and Find Full Text PDF

A functional PbO-lignin electrode hydrid material composite was designed and manufactured. Moreover, its connection efficiency was confirmed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). We noted that the superficial layers of PbO combined with layers of the biopolymer and that oxygen atoms present in both materials had influence on the chemical environment of the neighboring compound.

View Article and Find Full Text PDF

Hydrothermal crystallization was used to synthesize an advanced hybrid system containing titania and molybdenum disulfide (with a TiO:MoS molar ratio of 1:1). The way in which the conditions of hydrothermal treatment (180 and 200 °C) and thermal treatment (500 °C) affect the physicochemical properties of the products was determined. A physicochemical analysis of the fabricated materials included the determination of the microstructure and morphology (scanning and transmission electron microscopy-SEM and TEM), crystalline structure (X-ray diffraction method-XRD), chemical surface composition (energy dispersive X-ray spectroscopy-EDS) and parameters of the porous structure (low-temperature N sorption), as well as the chemical surface concentration (X-ray photoelectron spectroscop-XPS).

View Article and Find Full Text PDF

Isotactic-polypropylene (-PP) films with inorganic minerals such as Sillikolloid, perlite, or glass beads were prepared. The obtained polymeric films were subjected to an orientation process. Moreover, this paper includes results how the artificial accelerated weathering influences surface properties of the unoriented and oriented -PP films with the mineral fillers.

View Article and Find Full Text PDF

Photocatalysis can offer solutions for the transformation of greenhouse gases, such as methane and carbon dioxide. In the paper, a candidate for such a photocatalyst is presented, based on a composite of titania with carbon spheres. The material was obtained using microwave assisted solvothermal synthesis, enabling good dispersion of titania.

View Article and Find Full Text PDF

In this work the preparation of polyamide 12 (PA12) based composites reinforced with pristine and surface-modified carbon nanotubes is reported. A qualitative and quantitative evaluation of multi-walled carbon nanotube functionalization with oxygen containing reactive groups achieved by different procedures of chemical treatment is presented. Simple strong oxidative acid treatment as well as chlorination with subsequent chloroacetic acid treatment were applied.

View Article and Find Full Text PDF

Two methods-attenuated total reflection Fourier infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS)-have been used to analyze the chemical structure of polytetrafluorethylene (PTFE) thin coatings deposited by pulsed laser (PLD) and pulsed electron beam (PED) ablations. The volume of the analyzed materials is significantly different in these techniques which can be of great importance in the characterization of highly heterogeneous thin films. Optical microscopy, atomic force microscopy (AFM) and scanning electron microscopy (SEM) have been additionally used to examine the coating surface morphology.

View Article and Find Full Text PDF

Poly(ethylene--vinyl acetate) (EVA) films were deposited for the first time using physical methods. The chemical structure of the films obtained using two techniques, pulsed electron beam deposition (PED) and pulsed laser deposition (PLD), was studied by attenuated total reflection Fourier infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). Whilst significant molecular degradation of the EVA films was observed for the PLD method, the original macromolecular structure was only partially degraded when the PED technique was used, emphasizing the superiority of the PED method over PLD for structurally complex polymers such as EVA.

View Article and Find Full Text PDF

Enzymatic biodegradation of pharmaceuticals, using enzymes such as laccase, is a green solution for the removal of toxic pollutants that has attracted growing interest over recent years. Moreover, the application of immobilized biocatalysts is relevant for industrial applications, due to the improved stability and reusability of the immobilized enzymes. Thus, in the present study, laccase was immobilized by adsorption and encapsulation using poly(l-lactic acid)-co-poly(ε-caprolactone) (PLCL) electrospun nanofibers as a tailor-made support.

View Article and Find Full Text PDF

Silver nanoparticles (NPs) are effective antibacterial agents; however, aggregation of NPs and uncontrolled release of Ag affect their efficiency and may pose a risk to the environment. To overcome these disadvantages, immobilization of Ag onto titanate nanotubes (TNTs) was investigated. This paper describes the physicochemical and antibacterial properties of silver incorporated titanate nanotubes (Ag/TNTs) prepared using five procedures and containing different Ag amounts (0.

View Article and Find Full Text PDF

In this study, hybrid pigments based on carminic acid (CA) were synthesized and applied in polymer materials. Modification of aluminum-magnesium hydroxycarbonate (LH) with CA transformed the soluble chromophore into an organic-inorganic hybrid colorant. Secondary ion mass spectroscopy (TOF-SIMS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and UV-Vis spectroscopy were used to study the structure, composition, and morphology of the insoluble LH/CA colorant.

View Article and Find Full Text PDF

A hybrid nanocomposites containing nanocrystalline TiO₂ and graphene-related materials (graphene oxide or reduced graphene oxide) were successfully prepared by mechanical mixing and the hydrothermal method in the high-pressure atmosphere. The presented X-ray photoelectron spectroscopy (XPS) study and quantitative elemental analysis confirm similar content of carbon in graphene oxide GO (52 wt% and 46 wt%, respectively) and reduced graphene oxide rGO (92 wt% and 98 wt%, respectively). No chemical interactions between TiO₂ and GO/rGO was found.

View Article and Find Full Text PDF

Comprehensive study to evaluate the ability of hydrogen uptake by disordered mesoporous hollow carbon spheres doped witch metal such as Pt, Pd or Pt/Pd was conducted. They were synthesized facilely using sonication and then calcination process under vacuum at the temperature of 550 °C. The effect on hydrogen sorption at neat-ambient conditions (40 °C, up to 45 bar) was thoroughly analyzed.

View Article and Find Full Text PDF

The reduction of cobalt molybdenum oxide under an ammonia atmosphere resulting in the formation of ternary interstitial nitride CoMoN was studied. Intermediate phases were identified by an in situ powder X-ray diffraction using a reaction chamber. It was supplemented by a thermogravimetric analysis of the process.

View Article and Find Full Text PDF

In this research we use ionic liquids in combination with mild process conditions to provide a selective increase in the content of carbonyl groups in the kraft lignin structure. Such modification can improve the properties of the pristine biopolymer. In this study, aromatic substituted ionic liquids were synthesized using [CCIm][HSO] as a template structure.

View Article and Find Full Text PDF

In the present study, graphene oxide (GO) was used for the adsorption of anionic azo-dyes such as Acid Orange 8 (AO8) and Direct Red 23 (DR23) from aqueous solutions. GO was characterized by Fourier Transform-Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS), Thermogravimetric Analysis (TGA), Atomic Force Microscopy (AFM), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), High-Resolution Transmission Electron Microscopy (HRTEM) and zeta potential measurements. The influence of dye initial concentration, temperature and pH on AO8 and DR23 adsorption onto GO was investigated.

View Article and Find Full Text PDF

A new method is proposed for the production of a novel chitin-polyhedral oligomeric silsesquioxanes (POSS) enzyme support. Analysis by such techniques as X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy confirmed the effective functionalization of the chitin surface. The resulting hybrid carriers were used in the process of immobilization of the lipase type b from (CALB).

View Article and Find Full Text PDF