Publications by authors named "Dariusz Kluczyk"

In the presented study, advanced experimental techniques, including electronic absorption and fluorescence spectroscopies [with Resonance Light Scattering (RLS)], measurements of fluorescence lifetimes in the frequency domain, calculations of dipole moment fluctuations, quantum yields, and radiative and non-radiative transfer constants, were used to characterize a selected analogue from the group of 1,3,4-thiadiazole, namely: 4-[5-(naphthalen-1-ylmethyl)-1,3,4-thiadiazol-2-yl]benzene-1,3-diol (NTBD), intrinsically capable to demonstrate enol → keto excited-states intramolecular proton transfer (ESIPT) effects. The results of spectroscopic analyses conducted in solvent media as well as selected mixtures were complemented by considering biological properties of the derivative in question, particularly in terms of its potential microbiological activity. The compound demonstrated a dual fluorescence effect in non-polar solvents, e.

View Article and Find Full Text PDF

Safe operation of photosynthesis is vital to plants and is ensured by the activity of processes protecting chloroplasts against photo-damage. The harmless dissipation of excess excitation energy is considered to be the primary photoprotective mechanism and is most effective in the combined presence of PsbS protein and zeaxanthin, a xanthophyll accumulated in strong light as a result of the xanthophyll cycle. Here we address the problem of specific molecular mechanisms underlying the synergistic effect of zeaxanthin and PsbS.

View Article and Find Full Text PDF

Photosystem II (PSII) converts light into chemical energy powering almost all life on Earth. The primary photovoltaic reaction in the PSII reaction center requires energy corresponding to 680 nm, which is significantly higher than in the case of the low-energy states in the antenna complexes involved in the harvesting of excitations driving PSII. Here we show that despite seemingly insufficient energy, the low-energy excited states can power PSII because of the activity of the thermally driven up-conversion.

View Article and Find Full Text PDF

This paper presents the results of stationary fluorescence spectroscopy and time-resolved spectroscopy analyses of two 1,3,4-thiadiazole analogues, i.e. 4-(5-methyl-1,3,4-thiadiazol-2-yl)benzene-1,3-diol (C1) and 4-(5-heptyl-1,3,4-thiadiazol-2-yl)benzene-1,3-diol (C7) in an aqueous medium containing different concentrations of hydrogen ions.

View Article and Find Full Text PDF
Article Synopsis
  • - The article explores the spectroscopic analysis of two 1,3,4-thiadiazole compounds (C1 and C7) in liposome systems made of DPPC, highlighting how their different molar concentrations affect their fluorescent properties.
  • - Fluorescence measurements indicated multiple emission bands linked to the molecular organization changes in the DPPC as it goes through phase transitions, with C7 showing interactions with both the lipid's polar head and hydrocarbon chains, while C1 interacted more with the polar region.
  • - The study connects the observed fluorescence effects to molecular aggregation phenomena influenced by the structural composition of the compounds, particularly the alkyl substituents, providing insights that could apply to biologically relevant samples.
View Article and Find Full Text PDF

The article presents the results of spectroscopic studies of 4-(5-methyl-1,3,4-thiadiazol-2-yl)benzene-1,3-diol (C1) and 4-(5-heptyl-1,3,4-thiadiazol-2-yl)benzene-1,3-diol (C7) in organic solvent solutions. Depending on the concentration of the compound used, three bands were observed in the fluorescence emission spectra of the compounds in DMSO solutions. A single band was observed in methanol, propan-2-ol, or ethanol.

View Article and Find Full Text PDF