Application of fertilizers is a routine method in agriculture to increase the fertility of plants However, conventional fertilizers have raised serious health and environmental problems in recent years. Therefore, the development of biodegradable superabsorbent hydrogels based on natural polymers with the capability for fertilizer controlled release has attracted much interest. In the current research, a novel nanocomposite hydrogel based on gelatin and carboxymethyl cellulose polymers enriched with an iron based metal- organic framework (MIL-53 (Iron)) was prepared.
View Article and Find Full Text PDFInvestigation of the current industrial processes, such as methanol to olefin (MTO) and hexane to olefin (HTO), in terms of green and sustainable chemistry approaches in order to design the process, catalyst and reactor from the beginning in such a way as to minimize environmental pollution is compulsory. Therefore, the synthesis of a group of multifunctional catalysts, which can be used simultaneously in both industrial processes to produce a variety of products, was studied. The effect of incorporation of different metals (Fe, Mn, Zn, Ga and Al) on the strengthening of each of the products was also studied.
View Article and Find Full Text PDFIn the present study, two statistical methods including the response surface method (RSM) and artificial neural network (ANN), were employed for modeling and optimization of selective catalytic reduction of NOx with NH (NH-SCR) over VO/TiO nanocatalysts. The relationship between catalyst preparation variables, such as metal loading, impregnation temperature, and calcination temperature on NO conversion were investigated. The R value of 0.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
September 2018
In this study, new slow release fertilizer encapsulated by superabsorbent nanocomposite was prepared by in-situ graft polymerization of sulfonated-carboxymethyl cellulose (SCMC) with acrylic acid (AA) in the presence of polyvinylpyrrolidone (PVP), silica nanoparticles and nitrogen (N), phosphorous (P), and potassium (K) (NPK) fertilizer compound. The prepared materials were characterized by FT-IR, XRD and scanning electron microscopy (SEM) techniques. The incorporation of NPK fertilizer into hydrogel nanocomposite network was verified by results of these analyses.
View Article and Find Full Text PDFIn this study, the effects of operation variables on catalytic performance of CeO2-MnOx (0.25)-Ba mixed oxide in catalytic reduction of NO with ammonia are investigated by using design of experiments. A response surface methodology (RSM) combined with the central composite design (CCD) is used to model and optimize the process variables, including concentration of 02 (vol.
View Article and Find Full Text PDFIn this paper, an artificial neural network (ANN) is first applied to perovskite catalyst design. A series of perovskite-type oxides with the LaxSr1-xFeyCo1-yO3 general formula were prepared with a sol-gel autocombustion method under different preparation conditions. A three-layer perceptron neural network was used for modeling and optimization of the catalytic combustion of toluene.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
September 2013
Preparation of Cu/Activated Carbon (Cu/AC) catalyst was optimized for low temperature selective catalytic reduction of NO by using response surface methodology. A central composite design (CCD) was used to investigate the effects of three independent variables, namely pre-oxidization degree (HNO3%), Cu loading (wt.%) and calcination temperature on NO conversion efficiency.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
October 2012
This article reports the development of oxidative precipitation (OP) method for synthesis of Co(3)O(4) as an environmental catalyst and comparison of its performance with that of obtained from conventional sol gel combustion (SG) method and industrial Pt/γ-Al(2)O(3) in remediation of toluene from air. Catalytic studies were carried out in a fixed bed reactor at 100-350°C under atmospheric pressure. Co(3)O(4) (OP) showed the highest activity in combustion of toluene.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
May 2012
Process and composition variables of catalytic oxidation of 2-propanol on Pt-Mn/γ-Al(2)O(3) bimetallic catalysts were optimized and modeled by response surface methodology (RSM). 31 factorial experiments were designed by setting four factors at five levels: X (1) = amount of manganese loading (wt.% Mn = 1, 3, 5, 7, 9); X (2) = reaction temperature (25, 50, 75, 100, 125°C); X (3) = calcination temperature (200, 300, 400, 500, 600°C) and X (4) = calcination time (2, 3, 4, 5, 6 h).
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
June 2011
Spinel-type CoMn(2)O(4)nano-powders are prepared using sol-gel auto combustion (SGC) and co-precipitation (CP) methods and their catalytic activities are evaluated in combustion of 2-propanol and toluene. The chemical-physical properties of the oxides are characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), N(2)-adsorption-desorption, temperature programmed reduction (TPR) and scanning electron microscopy (SEM). After calcination at 700°C, CoMn(2)O(4)-SGC shows higher amounts of the normal-type spinel phase and is more crystalline than CoMn(2)O(4)-CP.
View Article and Find Full Text PDF