Background: Proliferative scars in nude mice have demonstrated morphologic and histologic similarities to human hypertrophic scar. Gene knockout technology provides the opportunity to study the effect of deleting immune cells in various disease processes. The authors' objective was to test whether grafting human skin onto T-cell receptor (TCR) αβ-/-γδ-/-, recombination activating gene (RAG)-1-/-, and RAG-2γ-/-c-/- mice results in proliferative scars consistent with human hypertrophic scar and to characterize the morphologic, histologic, and cellular changes that occur after removing immune cells.
View Article and Find Full Text PDFHypertrophic scar (HTS) represents the dermal equivalent of fibroproliferative disorders that occur after injury involving the deep dermis while superficial wounds to the skin heal with minimal or no scarring. HTS is characterized by progressive deposition of collagen that occurs with high frequency in adult dermal wounds following traumatic or thermal injury. Increased levels of transforming growth factor-β1 (TGF-β1), decreased expression of small leucine-rich proteoglycans (SLRPs), and/or fibroblast subtypes may influence the development of HTS.
View Article and Find Full Text PDFHypertrophic scar (HSc) is a fibroproliferative disorder that occurs following deep dermal injury. Lack of a relevant animal model is one barrier toward better understanding its pathophysiology. Our objective is to demonstrate that grafting split-thickness human skin onto nude mice results in survival of engrafted human skin and murine scars that are morphologically, histologically, and immunohistochemically consistent with human HSc.
View Article and Find Full Text PDFPurpose: Partial bladder outlet obstruction has been shown in a rat model to progress from inflammation to hypertrophy to fibrosis. Small leucine-rich proteoglycans are extracellular matrix components associated with collagen fibrillogenesis and resultant scar formation. Two such critical small leucine-rich proteoglycans are decorin and biglycan.
View Article and Find Full Text PDFHypertrophic scar (HTS) represents the dermal equivalent of fibroproliferative disorders. Fibroblasts from the deep dermis are implicated in the development of HTS after injuries that involve deeper areas of the skin. However, fibroblasts that reside in the superficial layer of the skin show antifibrotic properties, and injuries limited to this area heal with little or no scarring.
View Article and Find Full Text PDFRecent data support the involvement of stromal cell-derived factor 1 (SDF-1) in the homing of bone marrow-derived stem cells to wound sites during skeletal, myocardial, vascular, lung, and skin wound repair as well as some fibrotic disorders via its receptor CXCR4. In this study, the role of SDF-1/CXCR4 signaling in the formation of hypertrophic scar (HTS) following burn injury and after treatment with systemic interferon α2b (IFNα2b) is investigated. Studies show SDF-1/CXCR4 signaling was up-regulated in burn patients, including SDF-1 level in HTS tissue and serum as well as CD14+ CXCR4+ cells in the peripheral blood mononuclear cells.
View Article and Find Full Text PDFHypertrophic scar (HTS) occurs after injuries involving the deep dermis, while superficial wounds (SWs) to the skin heal with minimal or no scarring. The levels of transforming growth factor (TGF)-β1 and small leucine-rich proteoglycans (SLRPs) with fibroblast subtype and function may influence the development of HTS. The aim of this study was to characterize the expression and localization of factors that regulate wound healing including SLRPs, TGF-β1, and TGF-β3 in an experimental human SW and deep wound (DW) scar model including fibroblasts from superficial and deep layers of normal dermis.
View Article and Find Full Text PDFSmall leucine-rich proteoglycans (SLRPs) are extracellular matrix molecules that regulate collagen fibrillogenesis and inhibit transforming growth factor-β activity; thus, they may play a critical role in wound healing and scar formation. Hypertrophic scarring is a dermal form of fibroproliferative disorders, which occurs in over 70% of burn patients and leads to disfigurement and limitations in function. By understanding the cellular and molecular mechanisms that lead to scarring after injury, new clinical therapeutic approaches can by developed to minimize abnormal scar formation in hypertrophic scarring and other fibroproliferative disorders.
View Article and Find Full Text PDFHypertrophic scar (HTS) following thermal injury and other forms of trauma is a dermal fibroproliferative disorder that leads to considerable morbidity. Because of the lack of an ideal animal model, research is difficult. We have established an HTS model that involves transplanting human split-thickness skin graft (STSG) or full-thickness skin graft (FTSG) onto the backs of nude mice.
View Article and Find Full Text PDFOral mucosal wounds heal with reduced scar formation compared with skin. The epithelial integrin alphavbeta6 is induced during wound healing, and it can activate fibrogenic transforming growth factor beta1 (TGF-beta1) and anti-fibrogenic TGF-beta3 that play key roles in scar formation. In this study, expression of beta6 integrin and members of the TGF-beta pathway were studied in experimental wounds of human gingiva and both gingiva and skin of red Duroc pigs using real-time PCR, gene microarrays, and immunostaining.
View Article and Find Full Text PDFWound healing in oral mucosa is fast and results in little scar formation as compared with skin. The biological mechanisms underlying this property are poorly understood but may provide valuable information about the factors that promote wound regeneration. Small leucine-rich proteoglycans (SLRPs) decorin, biglycan, fibromodulin and lumican are extracellular matrix molecules that regulate collagen fibrillogenesis, inhibit transforming growth factor-beta (TGF-beta) activity and reduce scarring.
View Article and Find Full Text PDFProtein kinase B (Akt), glycogen synthase kinase-3 (GSK-3) and members of the Wnt signal transduction pathway were recently found to be altered in schizophrenia and targeted by antipsychotic drugs. In the current study, selected Wnt signalling proteins were investigated to determine if they are altered by the antipsychotics clozapine or haloperidol in the rat prefrontal cortex. Pheochromocytoma (PC12) and neuroblastoma (SH-SY5Y) cells were also used to elucidate how antipsychotics generated the pattern of changes observed in vivo.
View Article and Find Full Text PDF