Introduction: The recent success of renal denervation in lowering blood pressure in drug-resistant hypertensive patients has stimulated interest in developing novel approaches to renal denervation including local drug/chemical delivery. The purpose of this study was to develop a rat model in which depletion of renal norepinephrine (NE) could be used to determine the efficacy of renal denervation after the delivery of a chemical to the periadventitial space of the renal artery.
Methods: Renal denervation was performed on a single renal artery of 90 rats (n = 6 rats/group).
Combining stem cell transplantation with nanoparticle-mediated delivery of drugs and pharmaceuticals is envisioned to be one of the next major developmental steps in regenerative medicine. However, a major challenge would be to keep nanoparticles co-localized with stem cells upon transplantation or transfusion in situ. Since nanoparticles are physically much smaller in size than cells and would not specifically bind to extracellular matrix, it is easier for them to disperse from the transplantation site via the blood circulation.
View Article and Find Full Text PDFAim: To determine the thermodynamics of binding reaction of arginine oligomer (R8) to bovine submaxillary mucin (BSM) in order to provide the foundation for understanding the influence of mucin on transport of macromolecules through mucosa mediated by arginine oligomer.
Methods: Ultracentrifugation sedimentation was employed to investigate the interaction of BSM-R8. The mixtures of R8 with variable concentration and constant volume of BSM were placed on a shaker under oscillation at 25 degrees C to achieve equilibriums of binding reaction, and then centrifuged.