Publications by authors named "Darius Bunandar"

Analog computing has reemerged as a promising avenue for accelerating deep neural networks (DNNs) to overcome the scalability challenges posed by traditional digital architectures. However, achieving high precision using analog technologies is challenging, as high-precision data converters are costly and impractical. In this work, we address this challenge by using the residue number system (RNS) and composing high-precision operations from multiple low-precision operations, thereby eliminating the need for high-precision data converters and information loss.

View Article and Find Full Text PDF

Advanced machine learning models are currently impossible to run on edge devices such as smart sensors and unmanned aerial vehicles owing to constraints on power, processing, and memory. We introduce an approach to machine learning inference based on delocalized analog processing across networks. In this approach, named Netcast, cloud-based "smart transceivers" stream weight data to edge devices, enabling ultraefficient photonic inference.

View Article and Find Full Text PDF

Photonic system component counts are increasing rapidly, particularly in CMOS-compatible silicon photonics processes. Large numbers of cascaded active photonic devices are difficult to implement when accounting for constraints on area, power dissipation, and response time. Plasma dispersion and the thermo-optic effect, both available in CMOS-compatible silicon processes, address a subset of these criteria.

View Article and Find Full Text PDF

The manipulation of high-dimensional degrees of freedom provides new opportunities for more efficient quantum information processing. It has recently been shown that high-dimensional encoded states can provide significant advantages over binary quantum states in applications of quantum computation and quantum communication. In particular, high-dimensional quantum key distribution enables higher secret-key generation rates under practical limitations of detectors or light sources, as well as greater error tolerance.

View Article and Find Full Text PDF

One of the current challenges in photonics is developing high-speed, power-efficient, chip-integrated optical communications devices to address the interconnects bottleneck in high-speed computing systems. Silicon photonics has emerged as a leading architecture, in part because of the promise that many components, such as waveguides, couplers, interferometers and modulators, could be directly integrated on silicon-based processors. However, light sources and photodetectors present ongoing challenges.

View Article and Find Full Text PDF

We demonstrate a large-scale tunable-coupling ring resonator array, suitable for high-dimensional classical and quantum transforms, in a CMOS-compatible silicon photonics platform. The device consists of a waveguide coupled to 15 ring-based dispersive elements with programmable linewidths and resonance frequencies. The ability to control both quality factor and frequency of each ring provides an unprecedented 30 degrees of freedom in dispersion control on a single spatial channel.

View Article and Find Full Text PDF