The recent outbreak of Marburg virus (MARV) in Rwanda underscores the need for effective countermeasures against this highly fatal pathogen, with case fatality rates reaching 90%. Currently, no vaccines or approved treatments exist for MARV infection, distinguishing it from related viruses like Ebola. Our research demonstrates that the oral drug obeldesivir (ODV), a nucleoside analog prodrug, shows promising antiviral activity against filoviruses in vitro and offers significant protection in animal models.
View Article and Find Full Text PDFEbola virus (EBOV) causes severe disease in humans, with mortality as high as 90%. The small-molecule antiviral drug remdesivir (RDV) has demonstrated a survival benefit in EBOV-exposed rhesus macaques. Here, we characterize the efficacy of multiple intravenous RDV dosing regimens on survival of rhesus macaques 42 days after intramuscular EBOV exposure.
View Article and Find Full Text PDFDespite the wide availability of several safe and effective vaccines that prevent severe COVID-19, the persistent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) that can evade vaccine-elicited immunity remains a global health concern. In addition, the emergence of SARS-CoV-2 VOCs that can evade therapeutic monoclonal antibodies underscores the need for additional, variant-resistant treatment strategies. Here, we characterize the antiviral activity of GS-5245, obeldesivir (ODV), an oral prodrug of the parent nucleoside GS-441524, which targets the highly conserved viral RNA-dependent RNA polymerase (RdRp).
View Article and Find Full Text PDFObeldesivir (ODV, GS-5245) is an orally administered prodrug of the parent nucleoside of remdesivir (RDV) and is presently in phase 3 trials for COVID-19 treatment. In this work, we show that ODV and its circulating parent nucleoside metabolite, GS-441524, have similar in vitro antiviral activity against filoviruses, including Marburg virus, Ebola virus, and Sudan virus (SUDV). We also report that once-daily oral ODV treatment of cynomolgus monkeys for 10 days beginning 24 hours after SUDV exposure confers 100% protection against lethal infection.
View Article and Find Full Text PDFMarburg virus (MARV) causes severe disease and high mortality in humans. The objective of this study was to characterize disease manifestations and pathogenesis in cynomolgus macaques exposed to MARV. The results of this natural history study may be used to identify features of MARV disease useful in defining the ideal treatment initiation time for subsequent evaluations of investigational therapeutics using this model.
View Article and Find Full Text PDFRemdesivir is an phosphoramidate prodrug that releases the monophosphate of nucleoside GS-441524 () into lung cells, thereby forming the bioactive triphosphate . , an analog of ATP, inhibits the SARS-CoV-2 RNA-dependent RNA polymerase replication and transcription of viral RNA. Strong clinical results for have prompted interest in oral approaches to generate .
View Article and Find Full Text PDFDespite the wide availability of several safe and effective vaccines that can prevent severe COVID-19 disease, the emergence of SARS-CoV-2 variants of concern (VOC) that can partially evade vaccine immunity remains a global health concern. In addition, the emergence of highly mutated and neutralization-resistant SARS-CoV-2 VOCs such as BA.1 and BA.
View Article and Find Full Text PDFThe urgent response to the COVID-19 pandemic required accelerated evaluation of many approved drugs as potential antiviral agents against the causative pathogen, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Using cell-based, biochemical, and modeling approaches, we studied the approved HIV-1 nucleoside/tide reverse transcriptase inhibitors (NRTIs) tenofovir (TFV) and emtricitabine (FTC), as well as prodrugs tenofovir alafenamide (TAF) and tenofovir disoproxilfumarate (TDF) for their antiviral effect against SARS-CoV-2. A comprehensive set of in vitro data indicates that TFV, TAF, TDF, and FTC are inactive against SARS-CoV-2.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the COVID-19 pandemic, has infected over 260 million people over the past 2 years. Remdesivir (RDV, VEKLURY®) is currently the only antiviral therapy fully approved by the FDA for the treatment of COVID-19. The parent nucleoside of RDV, GS-441524, exhibits antiviral activity against numerous respiratory viruses including SARS-CoV-2, although at reduced in vitro potency compared to RDV in most assays.
View Article and Find Full Text PDFThe coronavirus disease 2019 (COVID-19) pandemic remains uncontrolled despite the rapid rollout of safe and effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines, underscoring the need to develop highly effective antivirals. In the setting of waning immunity from infection and vaccination, breakthrough infections are becoming increasingly common and treatment options remain limited. In addition, the emergence of SARS-CoV-2 variants of concern, with their potential to escape neutralization by therapeutic monoclonal antibodies, emphasizes the need to develop second-generation oral antivirals targeting highly conserved viral proteins that can be rapidly deployed to outpatients.
View Article and Find Full Text PDFThe utility of remdesivir treatment in COVID-19 patients is currently limited by the necessity to administer this antiviral intravenously, which has generally limited its use to hospitalized patients. Here, we tested a novel, subcutaneous formulation of remdesivir in the rhesus macaque model of SARS-CoV-2 infection that was previously used to establish the efficacy of remdesivir against this virus in vivo. Compared to vehicle-treated animals, macaques treated with subcutaneous remdesivir from 12 h through 6 days post inoculation showed reduced signs of respiratory disease, a reduction of virus replication in the lower respiratory tract, and an absence of interstitial pneumonia.
View Article and Find Full Text PDFRemdesivir (RDV) is a nucleotide analog prodrug with demonstrated clinical benefit in patients with coronavirus disease 2019 (COVID-19). In October 2020, the US FDA approved intravenous (IV) RDV as the first treatment for hospitalized COVID-19 patients. Furthermore, RDV has been approved or authorized for emergency use in more than 50 countries.
View Article and Find Full Text PDFRemdesivir is an antiviral approved for COVID-19 treatment, but its wider use is limited by intravenous delivery. An orally bioavailable remdesivir analog may boost therapeutic benefit by facilitating early administration to non-hospitalized patients. This study characterizes the anti-SARS-CoV-2 efficacy of GS-621763, an oral prodrug of remdesivir parent nucleoside GS-441524.
View Article and Find Full Text PDFThe COVID-19 pandemic remains uncontrolled despite the rapid rollout of safe and effective SARS-CoV-2 vaccines, underscoring the need to develop highly effective antivirals. In the setting of waning immunity from infection and vaccination, breakthrough infections are becoming increasingly common and treatment options remain limited. Additionally, the emergence of SARS-CoV-2 variants of concern with their potential to escape therapeutic monoclonal antibodies emphasizes the need to develop second-generation oral antivirals targeting highly conserved viral proteins that can be rapidly deployed to outpatients.
View Article and Find Full Text PDFAntimicrob Agents Chemother
August 2021
Remdesivir (RDV; GS-5734, Veklury), the first FDA-approved antiviral to treat COVID-19, is a single-diastereomer monophosphoramidate prodrug of an adenosine analogue. RDV is taken up in the target cells and metabolized in multiple steps to form the active nucleoside triphosphate (TP) (GS-443902), which, in turn, acts as a potent and selective inhibitor of multiple viral RNA polymerases. In this report, we profiled the key enzymes involved in the RDV metabolic pathway with multiple parallel approaches: (i) bioinformatic analysis of nucleoside/nucleotide metabolic enzyme mRNA expression using public human tissue and lung single-cell bulk mRNA sequence (RNA-seq) data sets, (ii) protein and mRNA quantification of enzymes in human lung tissue and primary lung cells, (iii) biochemical studies on the catalytic rate of key enzymes, (iv) effects of specific enzyme inhibitors on the GS-443902 formation, and (v) the effects of these inhibitors on RDV antiviral activity against SARS-CoV-2 in cell culture.
View Article and Find Full Text PDFA discovery program targeting respiratory syncytial virus (RSV) identified -nucleoside (RSV A2 EC = 530 nM) as a phenotypic screening lead targeting the RSV RNA-dependent RNA polymerase (RdRp). Prodrug exploration resulted in the discovery of remdesivir (, GS-5734) that is >30-fold more potent than against RSV in HEp-2 and NHBE cells. Metabolism studies in vitro confirmed the rapid formation of the active triphosphate metabolite, -, and in vivo studies in cynomolgus and African Green monkeys demonstrated a >10-fold higher lung tissue concentration of following molar normalized IV dosing of compared to that of .
View Article and Find Full Text PDFRemdesivir (RDV, Veklury) is a once-daily, nucleoside ribonucleic acid polymerase inhibitor of severe acute respiratory syndrome coronavirus 2 replication. Remdesivir has been granted approvals in several countries for use in adults and children hospitalized with severe coronavirus disease 2019 (COVID-19). Inside the cell, remdesivir undergoes metabolic activation to form the intracellular active triphosphate metabolite, GS-443902 (detected in peripheral blood mononuclear cells), and ultimately, the renally eliminated plasma metabolite GS-441524.
View Article and Find Full Text PDFAntimicrob Agents Chemother
January 2021
Remdesivir (RDV, GS-5734), the first FDA-approved antiviral for the treatment of COVID-19, is a single diastereomer monophosphoramidate prodrug of an adenosine analogue. It is intracellularly metabolized into the active triphosphate form, which in turn acts as a potent and selective inhibitor of multiple viral RNA polymerases. RDV has broad-spectrum activity against members of the coronavirus family, such as SARS-CoV-2, SARS-CoV, and MERS-CoV, as well as filoviruses and paramyxoviruses.
View Article and Find Full Text PDFObjectives: Current prophylaxis options for people at risk for HIV infection include two US FDA-approved daily pre-exposure prophylaxis (PrEP) regimens and guidelines for a 2-1-1 event-driven course specifically for men who have sex with men. Despite this, PrEP use rates remain suboptimal, and additional PrEP options may help to improve uptake among diverse populations. Here, we evaluated protective efficacy of two-dose PrEP and two-dose postexposure prophylaxis (PEP) schedules with emtricitabine (FTC)/tenofovir alafenamide (TAF) with or without bictegravir (BIC) in an SHIV macaque model.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the novel viral disease COVID-19. With no approved therapies, this pandemic illustrates the urgent need for broad-spectrum antiviral countermeasures against SARS-CoV-2 and future emerging CoVs. We report that remdesivir (RDV) potently inhibits SARS-CoV-2 replication in human lung cells and primary human airway epithelial cultures (EC = 0.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in 2019 as the causative agent of the novel pandemic viral disease COVID-19. With no approved therapies, this pandemic illustrates the urgent need for safe, broad-spectrum antiviral countermeasures against SARS-CoV-2 and future emerging CoVs. We report that remdesivir (RDV), a monophosphoramidate prodrug of an adenosine analog, potently inhibits SARS-CoV-2 replication in human lung cells and primary human airway epithelial cultures (EC = 0.
View Article and Find Full Text PDFDrug Metab Pharmacokinet
June 2020
Sofosbuvir (SOF) is a nucleotide prodrug which has been used as a backbone for the clinical treatment of hepatitis C viral infection. Because sofosbuvir undergoes complex first pass metabolism, including metabolic activation to form its pharmacologically active triphosphate (GS-331007-TP) to inhibit the viral RNA polymerase in the liver, it is difficult to project the human dose for clinical evaluation based on preclinical data. Selecting an appropriate animal model for drug exposure in the target tissue is challenging due to differences in absorption, stability, hepatic uptake, and intracellular activation across species.
View Article and Find Full Text PDFMiddle East respiratory syndrome coronavirus (MERS-CoV) is the causative agent of a severe respiratory disease associated with more than 2468 human infections and over 851 deaths in 27 countries since 2012. There are no approved treatments for MERS-CoV infection although a combination of lopinavir, ritonavir and interferon beta (LPV/RTV-IFNb) is currently being evaluated in humans in the Kingdom of Saudi Arabia. Here, we show that remdesivir (RDV) and IFNb have superior antiviral activity to LPV and RTV in vitro.
View Article and Find Full Text PDFBackground: Tenofovir alafenamide (TAF)-based regimens are being evaluated for pre-exposure prophylaxis (PrEP). We used a macaque model of repeated exposures to simian human immunodeficiency virus (SHIV) to investigate whether TAF alone or the combination of TAF and emtricitabine (FTC) can prevent vaginal infection.
Methods: Pigtail macaques were exposed vaginally to SHIV162p3 once a week for up to 15 weeks.