Publications by authors named "Dario Rafael Olicon Hernandez"

This study innovatively employed solid-state fermentation (SSF) to evaluate chitinase induction in . Solid-state fermentation minimizes water usage, a crucial global resource, and was applied using shrimp waste chitin and a mixture of commercial chitin with wheat bran as substrates. Shrimp waste and wheat bran were pretreated and characterized for SSF, and the fungus's utilization of the substrates was assessed using spectrophotometric and microscopic methods.

View Article and Find Full Text PDF

This study investigates the thermotolerant fungal biodiversity in caves and hot springs, focusing on their potential for extracellular enzyme production, specifically proteases. Samples were collected from the Cardonal region in Hidalgo, Mexico, using three different isolation methods. The study characterizes the morphological diversity of the isolated fungi and identifies various genera, including Aspergillus, Penicillium, Trichoderma, Cladosporium, and Fusarium, based on morphology.

View Article and Find Full Text PDF

Plasma membrane H+-ATPases of fungi, yeasts, and plants act as proton pumps to generate an electrochemical gradient, which is essential for secondary transport and intracellular pH maintenance. Saccharomyces cerevisiae has two genes (PMA1 and PMA2) encoding H+-ATPases. In contrast, plants have a larger number of genes for H+-ATPases.

View Article and Find Full Text PDF

The presence of emerging contaminants in the environment, such as pharmaceuticals, is a growing global concern. The excessive use of medication globally, together with the recalcitrance of pharmaceuticals in traditional wastewater treatment systems, has caused these compounds to present a severe environmental problem. In recent years, the increase in their availability, access and use of drugs has caused concentrations in water bodies to rise substantially.

View Article and Find Full Text PDF

Chitosan is a polycationic amino-sugar polymer soluble in acidic pH. As a potential antifungal, it has been tested against several fungi. Its main mode of action is the permeabilization of cell membrane by the interaction with specific membrane sites.

View Article and Find Full Text PDF
Article Synopsis
  • Polycyclic aromatic hydrocarbons (PAHs) are toxic compounds, and mycoremediation using Aspergillus sydowii effectively reduced PAH levels by up to 90% in a hypersaline environment.
  • The removal of PAHs like benzo[a]pyrene and phenanthrene was primarily due to biotransformation processes rather than physical adsorption, with no significant correlation to lignin modifying enzymes.
  • Transcriptomic analysis revealed significant gene expression changes in A. sydowii, indicating metabolic adaptations for the degradation and detoxification of PAHs involving complex enzymatic pathways.
View Article and Find Full Text PDF

Chitosan-oligosaccharides (COS) are low-molecular weight chitosan derivatives with interesting clinical applications. The optimization of both COS production and purification is an important step in the design of an efficient production system and for the exploration of new COS applications. Trichoderma harzianum is an innocuous biocontrol agent that represents a novel biotechnological tool due to the production of extracellular enzymes, including those that produce a COS mixture.

View Article and Find Full Text PDF

Diclofenac (DFC) is a common anti-inflammatory drug, and has attracted the significant attention due to its massive use around the world and its environmental impact. In this work, we describe for the first time the use of Penicillium oxalicum, an ascomycetes fungus, for the biotransformation of DFC at flask and bench bioreactor scales. We present a complete study of the role of enzymes, metabolic pathway, acute toxicity assays and comparison between free and immobilised biomass.

View Article and Find Full Text PDF

Four different laccase-producing strains were isolated from arid soils and used for bisphenol A (BPA) degradation. These strains were identified as Chaetomium strumarium G5I, Thielavia arenaria CH9, Thielavia arenaria HJ22 and Thielavia arenaria SM1(III) by internal transcribed spacer 5.8 S rDNA analysis.

View Article and Find Full Text PDF

Chitosan is a stressing molecule that affects the cells walls and plasma membrane of fungi. For chitosan derivatives, the action mode is not clear. In this work, we used the yeast to study the effects of these molecules on the plasma membrane, focusing on physiologic and stress responses to chitosan (CH), oligochitosan (OCH), and glycol-chitosan (GCH).

View Article and Find Full Text PDF

Bacillus thuringiensis is a nonhuman pathogen bacterium that is used as a fungal and insect biocontrol agent. Because of its environmental interaction, it possesses several extracellular enzymes that are able to degrade chitin and chitosan, two of the most important polymers because of their application in numerous fields. However, in recent years, it has been observed that oligosaccharides from the enzymatic degradation of chitosan have important benefits for human health.

View Article and Find Full Text PDF

Ustilago maydis, a dimorphic fungus causing corn smut disease, serves as an excellent model to study different aspects of cell development. This study shows the influence of chitosan, oligochitosan and glycol chitosan on cell growth and physiology of U. maydis.

View Article and Find Full Text PDF