Publications by authors named "Dario Moser"

How rapidly natural selection sorts genome-wide standing genetic variation during adaptation remains largely unstudied experimentally. Here, we present a genomic release-recapture experiment using paired threespine stickleback fish populations adapted to selectively different lake and stream habitats. First, we use pooled whole-genome sequence data from the original populations to identify hundreds of candidate genome regions likely under divergent selection between these habitats.

View Article and Find Full Text PDF

Genomic studies of parallel (or convergent) evolution often compare multiple populations diverged into two ecologically different habitats to search for loci repeatedly involved in adaptation. Because the shared ancestor of these populations is generally unavailable, the source of the alleles at adaptation loci, and the direction in which their frequencies were shifted during evolution, remain elusive. To shed light on these issues, we here use multiple populations of threespine stickleback fish adapted to two different types of derived freshwater habitats-basic and acidic lakes on the island of North Uist, Outer Hebrides, Scotland-and the present-day proxy of their marine ancestor.

View Article and Find Full Text PDF

Populations occurring in similar habitats and displaying similar phenotypes are increasingly used to explore parallel evolution at the molecular level. This generally ignores the possibility that parallel evolution can be mimicked by the fragmentation of an ancestral population followed by genetic exchange with ecologically different populations. Here we demonstrate such an ecological vicariance scenario in multiple stream populations of threespine stickleback fish divergent from a single adjacent lake population.

View Article and Find Full Text PDF

The mean retention times (MRT) of solute or particles in the gastrointestinal tract and the forestomach (FS) are crucial determinants of digestive physiology in herbivores. Besides ruminants, camelids are the only herbivores that have evolved rumination as an obligatory physiological process consisting of repeated mastication of large food particles, which requires a particle sorting mechanism in the FS. Differences between camelids and ruminants have hardly been investigated so far.

View Article and Find Full Text PDF

Methane emissions from ruminant livestock have been intensively studied in order to reduce contribution to the greenhouse effect. Ruminants were found to produce more enteric methane than other mammalian herbivores. As camelids share some features of their digestive anatomy and physiology with ruminants, it has been proposed that they produce similar amounts of methane per unit of body mass.

View Article and Find Full Text PDF

Advances in genomic techniques are greatly facilitating the study of molecular signatures of selection in diverging natural populations. Connecting these signatures to phenotypes under selection remains challenging, but benefits from dissections of the genetic architecture of adaptive divergence. We here perform quantitative trait locus (QTL) mapping using 488 F2 individuals and 2011 single nucleotide polymorphisms (SNPs) to explore the genetic architecture of skeletal divergence in a lake-stream stickleback system from Central Europe.

View Article and Find Full Text PDF

Heterogeneity in recombination rate may strongly influence genome evolution and entail methodological challenges to genomic investigation. Nevertheless, a solid understanding of these issues awaits detailed information across a broad range of taxa. Based on 282 F(2) individuals and 1872 single nucleotide polymorphisms, we characterize recombination in the threespine stickleback fish genome.

View Article and Find Full Text PDF

Life history divergence between populations inhabiting ecologically distinct habitats might be a potent source of reproductive isolation, but has received little attention in the context of speciation. We here test for life history divergence between threespine stickleback inhabiting Lake Constance (Central Europe) and multiple tributary streams. Otolith analysis shows that lake fish generally reproduce at two years of age, while their conspecifics in all streams have shifted to a primarily annual life cycle.

View Article and Find Full Text PDF