The knee is one of the joints most vulnerable to disease and injury, particularly in athletes and older adults. Surface temperature monitoring provides insights into the health of the analysed area, supporting early diagnosis and monitoring of conditions such as osteoarthritis and tendon injuries. This study presents an innovative approach that combines infrared thermography techniques with a Resnet 152 (DeepLabCut based) to detect and monitor temperature variations across specific knee regions during repeated sit-to-stand exercises.
View Article and Find Full Text PDFThis study examined the efficacy of an optimized DeepLabCut (DLC) model in motion capture, with a particular focus on the sit-to-stand (STS) movement, which is crucial for assessing the functional capacity in elderly and postoperative patients. This research uniquely compared the performance of this optimized DLC model, which was trained using 'filtered' estimates from the widely used OpenPose (OP) model, thereby emphasizing computational effectiveness, motion-tracking precision, and enhanced stability in data capture. Utilizing a combination of smartphone-captured videos and specifically curated datasets, our methodological approach included data preparation, keypoint annotation, and extensive model training, with an emphasis on the flow of the optimized model.
View Article and Find Full Text PDFHip fractures are one of the major disability causes associated with a high morbidity and mortality rate. Early surgery and stable fixation could be associated with better pain control, possibly lower mortality rates, and early recovery of autonomy.
View Article and Find Full Text PDFObjective: The purpose of this investigation is to highlight the technical components of a new kind of screw-retained dental implant prosthesis. The hypothesis is whether the OT Bridge (Rhein 83 S.R.
View Article and Find Full Text PDFThe objective of this investigation was to analyze the mechanical features of two different prosthetic retention devices. By applying engineering tools like the finite element method (FEM) and Von Mises analyses, we investigated how dental implant devices hold out against masticatory strength during chewing cycles. Two common dental implant overdenture retention systems were analyzed and then compared with a universal-common dental abutment.
View Article and Find Full Text PDFThe objective of the present investigation was to evaluate how dental implant positioning can influence the masticatory stress distribution over screwed mandibular prosthodontics restoration and over the surrounding bone tissue. Moreover, the dental implant components and overdenture bar strengths under masticatory cycles have been investigated in order to evaluate possible screw and prosthesis breakage. A "virtual jaw" model and 3D dental implant were reproduced to realise finite element analysis in order to underline the parameters and the mechanical characteristics of the bone and of the dental implants connected to the overdenture bar.
View Article and Find Full Text PDFPurpose: The objective of this investigation is to study prosthodontics and internal components resistance to the masticatory stress and considering different force directions by using Finite Element Method analysis (FEM). The structural materials of the components are usually Titanium alloy grade 4 or 5 and thus, guarantee the integration of the fixture in the bone due to the osteointegration phenomena. Even if the long-term dental implant survival rate is easy to be obtained and confirmed by numerous researches, the related clinical success, due to the alteration of the mechanical and prosthodontics components is still controversial.
View Article and Find Full Text PDF