Publications by authors named "Dario Mendez-Cuadro"

Gingival enlargement is a common clinical sign in the gingival diseases associated with orthodontic treatment. Its biological mechanisms are not completely understood; nevertheless, the biochemical changes associated with these inflammatory and overgrowth processes could alter the post-translational protein modifications occurring in various locations within the mouth. Here, changes in the profiles of the carbonylated and phosphorylated proteins in saliva were examined in donors with gingival enlargement (seven men and seven women) and healthy donors (six men and eight women).

View Article and Find Full Text PDF

Protein carbonylation by reactive aldehydes derived from lipid peroxidation leads to cross-linking, oligomerization, and aggregation of proteins, causing intracellular damage, impaired cell functions, and, ultimately, cell death. It has been described in aging and several age-related chronic conditions. However, the basis of structural changes related to the loss of function in protein targets is still not well understood.

View Article and Find Full Text PDF

Background: Serum albumin is the most abundant protein in the Mammalia blood plasma at where plays a decisive role in the transport wide variety of hydrophobic ligands. BSA undergoes oxidative modifications like the carbonylation by the reactive carbonyl species (RCSs) 4-hydroxy-2-nonenal (HNE), 4 hydroxy-2-hexenal (HHE), malondialdehyde (MDA) and 4-oxo-2-nonenal (ONE), among others. The structural and functional changes induced by protein carbonylation have been associated with the advancement of neurodegenerative, cardiovascular, metabolic and cancer diseases.

View Article and Find Full Text PDF

Protein oxidative modifications with reactive carbonyl species (RCS) is directly linked to metabolic processes in premature aging, cancer, neurodegenerative and infectious diseases. RCS as 4-Hydroxy-2-nonal (HNE), 4-Hydroxy-2-hexenal (HHE), 4-Oxo-2-nonenal (ONE) and Malondialdehyde (MDA) attack nucleophilic amino acids residues forming irreversible adducts with proteins as Thioredoxins (Trx). This is a class of small thiol oxide-reductases playing a key role in redox signaling and oxidative stress responses in mammals.

View Article and Find Full Text PDF

Iron overload caused by hereditary hemochromatosis (HH) increases free reactive oxygen species that, in turn, induce lipid peroxidation. Its 4-hydroxynonenal (HNE) by-product is a well-established marker of lipid peroxidation since it reacts with accessible proteins with deleterious consequences. Indeed, elevated levels of HNE are often detected in a wide variety of human diseases related to oxidative stress.

View Article and Find Full Text PDF
Article Synopsis
  • - Cadmium is a toxic heavy metal commonly found in the environment and can be absorbed by plants, raising concerns about its ecological impact and effects on food chains.
  • - A study used proteomics to analyze protein changes in plants grown in soils with different cadmium levels, identifying 329 proteins linked to metabolism, photosynthesis, stress response, and cellular processes.
  • - The findings suggest specific proteins, like Ras-related protein RABA1e and heat shock proteins, play significant roles in how these plants tolerate cadmium stress.
View Article and Find Full Text PDF

The aquatic macrophyte Eichhornia crassipes has great potential for the control of Hg pollution in the environment. The aim of this study was to investigate the capability of E. crassipes to accumulate elemental mercury (Hg).

View Article and Find Full Text PDF

Worldwide, chicken meat is widely consumed due to its low cost, high nutritional value and non-interference with religious or cultural beliefs. However, during animal husbandry chickens are exposed to many chemical substances, including tetracyclines and β-lactams, which are used to prevent and cure several infections. Some residues of these compounds may bioaccumulate and be present in chicken meat after slaughtering, promoting oxidative reactions.

View Article and Find Full Text PDF

This work aimed to evaluate the effect of carbonylation induced by tetracyclines, β-lactams, fluoroquinolones, and pyrethroids in caseins of bovine origin on their immunoreactivity and allergenicity. Using a spectrophotometric method, ELISA, dot-blot, and an IgE-mediated milk allergy mouse model, we confirmed that antibiotics and pesticides at their maximum residue limit, promoted the carbonylation of caseins (among 5.0 ± 0.

View Article and Find Full Text PDF

Background: Matrix metalloproteinases (MMPs) are proteolytic enzymes involved in extracellular matrix remodeling of all body tissues, including oral tissues such as gingival tissue. Expression levels of MMPs are widely studied as important biomarkers for explaining the biochemical mechanisms and evolution of many oral diseases.

Objective: Demonstrate the sensitivity, reproducibility, repeatability, and robustness of the dot blot assay for the relative quantification of MMP-8 and MMP-9 expression levels in patients with GO associated with orthodontic treatment.

View Article and Find Full Text PDF

Invasion of Plasmodium into the red blood cell involves the interactions of a substantial number of proteins, with red cell membrane proteins as the most involved throughout the process from entry to exit. The objective of this work was to identify proteins of the human erythrocyte membrane capable of generating an antigenic response to P. falciparum and P.

View Article and Find Full Text PDF

Objective: To determine nickel levels and their impact on protein carbonylation in gum samples from patients with gingival overgrowth by orthodontic treatment.

Design: A retrospective observational study with 33 patients divided into three groups. Group 1 patients with gingival overgrowth by orthodontic appliances; group 2 patients without gingival overgrowth but with a history of orthodontic treatment; group 3 patients without overgrowth and history of orthodontic appliances.

View Article and Find Full Text PDF

Protein carbonylation is an irreversible oxidative modification that has been associated with a decrease in the quality and nutritional value of products of animal origin. Generally, the carbonylation is attributed to processes of slaughter, processing, and cold storage of products. However, in vitro studies have shown that fluoroquinolone and organophosphate pesticides residues at their maximum residue limits (MRL) can promote carbonylation of animal proteins.

View Article and Find Full Text PDF

Chlorpyrifos (CPF) is an organophosphorus pesticide used in poultry to prevent and/or kill insects and such as preserving agents of poultry feed. Exposure continues to CPF can promote its accumulation at trace concentrations in animal tissue. The toxicological effects of these residues (carcinogenicity, genotoxicity, and neurological disorders) have been related to oxidative stress.

View Article and Find Full Text PDF

Organophosphate pesticides are frequently used to eliminate or prevent insects in poultry. However, their residues may continue in meat after slaughtering. In this study, proteomics and peptidomics approaches were used to evaluate their oxidative impact on myosin and chicken breast proteins under in vitro conditions.

View Article and Find Full Text PDF

The data described here supports a part of the research article "Effect of 4‑HNE Modification on ZU5-ANK Domain and the Formation of Their Complex with β‑Spectrin: A Molecular Dynamics Simulation Study" [1]. Dataset on Gaff force field parameters of AMBER is provided for the non-standard arginine resulting of reaction with 4-hydroxy-2-nonenal (4-HNE), the major secondary product of lipids peroxidation. Arg-HNE 2-pentilpyrrole adduct is part of the 4-hydroxyalkenals described in various physiopathological disorders related to increased oxidative stress.

View Article and Find Full Text PDF

Although the impact of oxidation on human health has been of growing interest, the oxidation of proteins, major component of meat, has received little attention. This paper describes the effect of five fluoroquinolones (FQs) on carbonylation of sarcoplasmic and myofibrillar proteins of beef when found at concentrations close to the maximum residue limit (MRL). Samples were treated individually with the FQs, determining in each protein fraction the carbonyl index, protein content and oxidized proteins identification, using 2,4-dinitrophenyhydrazine (DNPH) alkaline assay, Western blot and Bradford methods, and mass spectrometry, respectively.

View Article and Find Full Text PDF

4-HNE-modified ankyrins have been described in diseases such as diabetes, renal failure, G6PD deficient, sickle cell trait, infected erythrocytes with different AB0 blood groups. However, effects at the atomic level of this carbonylation on structure and function of modified protein are not yet fully understood. We present a study based on molecular dynamics simulations of nine 4-HNE modified residues of the ZU5-ANK ankyrin domain with β-spectrin and their binding energy profiles.

View Article and Find Full Text PDF

Heavy metal tolerant plants have phytoremediation potential for the recovery of contaminated soils, and the characterization of their metabolic adaptation processes is an important starting point to elucidate their tolerance mechanisms at molecular, biochemical and physiological levels. In this research, the effects of Cd and Pb on growth and protein carbonylation in tissues of exposed to 30 and 50 mg·Kg Cd and Pb respectively were determined. seedlings exposed to metals grew more than controls until 60 days of cultivation and limited their oxidative effects to a reduced protein group.

View Article and Find Full Text PDF

The presence of hemoglobin A-S (HbAS) in erythrocytes has been related to the high production of reactive oxygen species (ROS) and an increased in intracellular oxidative stress that affects the progress of erythrocytic cycle life and attenuates its serious clinical symptoms. Nevertheless, oxidative effects on proteome across the intraerythrocytic cycle in the presence of HbAS traits have not been described yet. Here, an immune dot-blot assay was used to quantify the carbonyl index (C.

View Article and Find Full Text PDF

The Caribbean Coast of Colombia has a flourishing plastic industry with weak and insufficient waste management policies and practices, leading to plastic pollution along its touristic beaches. In this work, primary and secondary microplastics (MPs) were surveyed at four different locations along the Colombian Caribbean Coast. Primary microplastics, specifically white new plastic pellets, represented the largest amount of MPs found, with densities decreasing in the order Cartagena > Coveñas > Puerto Colombia > Riohacha.

View Article and Find Full Text PDF

The data described here support the research article "4-HNE carbonylation induces local conformational changes on bovine serum albumin and thioredoxin. A molecular dynamics study" (Alviz-Amador et al., 2018) .

View Article and Find Full Text PDF

Microplastics are new pollutants considered a source of concern for the oceans worldwide. This research reports the concentrations of trace metals on microplastics collected on beaches from Cartagena, an industrialized city in the Caribbean. Mercury (Hg) was quantified using a Hg analyzer and forty-seven trace elements were assessed by ICP/MS.

View Article and Find Full Text PDF

Deficiency of glucose-6-phosphate dehydrogenase (G6PD) and sickle cell trait (SCT) are described as the polymorphic disorders prevalent in erythrocytes. Both are considered the result of the selective pressure exerted by Plasmodium parasites over human genome, due to a certain degree of resistance to the clinical symptoms of severe malaria. There exist in both a prooxidant environment that favors the oxidative damage on membrane proteins, which probably is part of molecular protector mechanisms.

View Article and Find Full Text PDF

4-hydroxy-2-nonenal (4-HNE) is the main end product of peroxidation in lipids, capable of introduce carbonyl groups to nucleophilic amino acids via Michael additions and alter protein function. It has been reported that 4-HNE protein carbonylation is associated with intracellular protein aggregation, the pathogenesis of neurodegenerative and metabolic diseases and yet it is unclear how the carbonylation affects the protein structure and dynamics at the atomic level. Here, we analysis the structural effects of 4-HNE modification through formation of Michael adducts of Cys-4HNE, His-4HNE and Lys-4HNE on Serum Albumin (BSA) and Thioredoxin (TRX).

View Article and Find Full Text PDF