In this work, chemical expansion in perovskite oxides was characterized in detail, motivated, inter alia, by a desire to understand the lower chemical expansion coefficients observed for perovskites in comparison to fluorite-structured oxides. Changes in lattice parameter and in local atomic arrangements taking place during compositional changes of perovskites, i.e.
View Article and Find Full Text PDFThe effect of dislocations on the chemical, electrical and transport properties in oxide materials is important for electrochemical devices, such as fuel cells and resistive switches, but these effects have remained largely unexplored at the atomic level. In this work, by using large-scale atomistic simulations, we uncover how a ⟨100⟩{011} edge dislocation in SrTiO3, a prototypical perovskite oxide, impacts the local defect chemistry and oxide ion transport. We find that, in the dilute limit, oxygen vacancy formation energy in SrTiO3 is lower at sites close to the dislocation core, by as much as 2 eV compared to that in the bulk.
View Article and Find Full Text PDFStrained oxide thin films are of interest for accelerating oxide ion conduction in electrochemical devices. Although the effect of elastic strain has been uncovered theoretically, the effect of dislocations on the diffusion kinetics in such strained oxides is yet unclear. Here we investigate a 1/2<110>{100} edge dislocation by performing atomistic simulations in 4-12% doped CeO2 as a model fast ion conductor.
View Article and Find Full Text PDFClassical molecular dynamics simulations are performed on LiF in the framework of the polarizable ion model. The overlap repulsion and polarization terms of the interaction potential are derived on a purely non-empirical, first-principles basis. For the dispersion, three cases are considered: a first one in which the dispersion parameters are set to zero and two others in which they are included, with different parametrizations.
View Article and Find Full Text PDFChemical expansion refers to the spatial dilation of a material that occurs upon changes in its composition. When this dilation is caused by a gradual, iso-structural increase in the lattice parameter with composition, it is related to the composition change by the stoichiometric expansion coefficient. In this work, three different approaches to defining the stoichiometric expansion coefficient (αS) are discussed.
View Article and Find Full Text PDFCeria (CeO2) co-doping has been suggested as a means to achieve ionic conductivities that are significantly higher than those in singly doped systems. Rekindled interest in this topic over the last decade has given rise to claims of much improved performance. The present study makes use of computer simulations to investigate the bulk ionic conductivity of rare earth (RE) doped ceria, where RE = Sc, Gd, Sm, Nd and La.
View Article and Find Full Text PDFThe structure of the network forming glass GeO(2) is investigated by making the first application of the method of in situ neutron diffraction with isotope substitution at pressures increasing from ambient to 8 GPa. Of the various models, the experimental results are in quantitative agreement only with molecular dynamics simulations made using interaction potentials that include dipole-polarization effects. When the reduced density ρ/ρ(0) > or approximately equal to 1.
View Article and Find Full Text PDFThe structure of GeO(2) glass was investigated at pressures up to 17.5(5) GPa using in situ time-of-flight neutron diffraction with a Paris-Edinburgh press employing sintered diamond anvils. A new methodology and data correction procedure were developed, enabling a reliable measurement of structure factors that are largely free from diamond Bragg peaks.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2012
In this work, we demonstrate the mechanism by which electronic charge localization increases the chemical expansion coefficient in two model systems, CeO(2-δ) and BaCeO(3-δ). Using Density Functional Theory calculations, we predict that this coefficient is increased by more than 70% when charge is fully localized, consistent with the observation that materials with a smaller degree of charge localization have smaller chemical expansion coefficients. This finding has important consequences for devising materials with smaller chemical expansion coefficients and for the reliability of the widely-used Shannon's ionic radii.
View Article and Find Full Text PDFIn this paper we present the parameterization of a new interionic potential for stoichiometric, reduced and doped CeO(2). We use a dipole polarizable potential (DIPPIM: the dipole polarizable ion model) and optimize its parameters by fitting them to a series of density functional theory calculations. The resulting potential was tested by calculating a series of fundamental properties for CeO(2) and by comparing them against experimental values.
View Article and Find Full Text PDFIn this work we study the high-pressure behaviour of liquid and glassy GeO(2) by means of molecular dynamics simulations. The interaction potential, which includes dipole polarization effects, was parametrized using first-principles calculations. Our simulations reproduce the most recent experimental structural data very well.
View Article and Find Full Text PDFJ Phys Condens Matter
March 2011
Thermal conductivities of ionic compounds (NaCl, MgO, Mg(2)SiO(4)) are calculated from equilibrium molecular dynamics simulations using the Green-Kubo method. Transferable interaction potentials including many-body polarization effects are employed. Various physical conditions (solid and liquid states, high temperatures, high pressures) relevant to the study of the heat transport in the Earth's mantle are investigated, for which experimental measures are very challenging.
View Article and Find Full Text PDFJ Phys Condens Matter
October 2009
Polarizable interaction potentials, parametrized using ab initio electronic structure calculations, have been used in molecular dynamics simulations to study the effect of cation composition on the ionic conductivity in the Zr(2)Y(2)O(7)-Y(3)NbO(7) system and to link the dynamical properties to the degree of lattice disorder. Across the composition range, this system retains a disordered fluorite crystal structure and the vacancy concentration is constant. The observed trends of decreasing conductivity and increasing disorder with increasing Nb(5+) content were reproduced in simulations with the cations randomly assigned to positions on the cation sublattice.
View Article and Find Full Text PDF